16,590 research outputs found

    Accelerated hardware video object segmentation: From foreground detection to connected components labelling

    Get PDF
    This is the preprint version of the Article - Copyright @ 2010 ElsevierThis paper demonstrates the use of a single-chip FPGA for the segmentation of moving objects in a video sequence. The system maintains highly accurate background models, and integrates the detection of foreground pixels with the labelling of objects using a connected components algorithm. The background models are based on 24-bit RGB values and 8-bit gray scale intensity values. A multimodal background differencing algorithm is presented, using a single FPGA chip and four blocks of RAM. The real-time connected component labelling algorithm, also designed for FPGA implementation, run-length encodes the output of the background subtraction, and performs connected component analysis on this representation. The run-length encoding, together with other parts of the algorithm, is performed in parallel; sequential operations are minimized as the number of run-lengths are typically less than the number of pixels. The two algorithms are pipelined together for maximum efficiency

    Using philosophy to improve the coherence and interoperability of applications ontologies: A field report on the collaboration of IFOMIS and L&C

    Get PDF
    The collaboration of Language and Computing nv (L&C) and the Institute for Formal Ontology and Medical Information Science (IFOMIS) is guided by the hypothesis that quality constraints on ontologies for software ap-plication purposes closely parallel the constraints salient to the design of sound philosophical theories. The extent of this parallel has been poorly appreciated in the informatics community, and it turns out that importing the benefits of phi-losophical insight and methodology into application domains yields a variety of improvements. L&C’s LinKBase® is one of the world’s largest medical domain ontologies. Its current primary use pertains to natural language processing ap-plications, but it also supports intelligent navigation through a range of struc-tured medical and bioinformatics information resources, such as SNOMED-CT, Swiss-Prot, and the Gene Ontology (GO). In this report we discuss how and why philosophical methods improve both the internal coherence of LinKBase®, and its capacity to serve as a translation hub, improving the interoperability of the ontologies through which it navigates

    Integration of Biological Sources: Exploring the Case of Protein Homology

    Get PDF
    Data integration is a key issue in the domain of bioin- formatics, which deals with huge amounts of heteroge- neous biological data that grows and changes rapidly. This paper serves as an introduction in the field of bioinformatics and the biological concepts it deals with, and an exploration of the integration problems a bioinformatics scientist faces. We examine ProGMap, an integrated protein homology system used by bioin- formatics scientists at Wageningen University, and several use cases related to protein homology. A key issue we identify is the huge manual effort required to unify source databases into a single resource. Un- certain databases are able to contain several possi- ble worlds, and it has been proposed that they can be used to significantly reduce initial integration efforts. We propose several directions for future work where uncertain databases can be applied to bioinformatics, with the goal of furthering the cause of bioinformatics integration

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    Personalized medicine support system : resolving conflict in allocation to risk groups and predicting patient molecular response to targeted therapy

    Get PDF
    Treatment management in cancer patients is largely based on the use of a standardized set of predictive and prognostic factors. The former are used to evaluate specific clinical interventions, and they can be useful for selecting treatments because they directly predict the response to a treatment. The latter are used to evaluate a patient’s overall outcomes, and can be used to identify the risks or recurrence of a disease. Current intelligent systems can be a solution for transferring advancements in molecular biology into practice, especially for predicting the molecular response to molecular targeted therapy and the prognosis of risk groups in cancer medicine. This framework primarily focuses on the importance of integrating domain knowledge in predictive and prognostic models for personalized treatment. Our personalized medicine support system provides the needed support in complex decisions and can be incorporated into a treatment guide for selecting molecular targeted therapies.Haneen Banjar, David Adelson, Fred Brown, and Tamara Leclerc
    corecore