665 research outputs found

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Α state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    Novel Data-Driven Approach Based on Capsule Network for Intelligent Multi-Fault Detection in Electric Motors

    Get PDF

    Bearing Fault Detection by One-Dimensional Convolutional Neural Networks

    Get PDF
    Bearing faults are the biggest single source of motor failures. Artificial Neural Networks (ANNs) and other decision support systems are widely used for early detection of bearing faults. The typical decision support systems require feature extraction and classification as two distinct phases. Extracting fixed features each time may require a significant computational cost preventing their use in real-time applications. Furthermore, the selected features for the classification phase may not represent the most optimal choice. In this paper, the use of 1D Convolutional Neural Networks (CNNs) is proposed for a fast and accurate bearing fault detection system. The feature extraction and classification phases of the bearing fault detection are combined into a single learning body with the implementation of 1D CNN. The raw vibration data (signal) is fed into the proposed system as input eliminating the need for running a separate feature extraction algorithm each time vibration data is analyzed for classification. Implementation of 1D CNNs results in more efficient systems in terms of computational complexity. The classification performance of the proposed system with real bearing data demonstrates that the reduced computational complexity is achieved without a compromise in fault detection accuracy

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    Machine learning-based fault detection and diagnosis in electric motors

    Get PDF
    Fault diagnosis is critical to any maintenance industry, as early fault detection can prevent catastrophic failures as well as a waste of time and money. In view of these objectives, vibration analysis in the frequency domain is a mature technique. Although well established, traditional methods involve a high cost of time and people to identify failures, causing machine learning methods to grow in recent years. The Machine learning (ML) methods can be divided into two large learning groups: supervised and unsupervised, with the main difference between them being whether the dataset is labeled or not. This study presents a total of four different methods for fault detection and diagnosis. The frequency analysis of the vibration signal was the first approach employed. This analysis was chosen to validate the future results of the ML methods. The Gaussian Mixture model (GMM) was employed for the unsupervised technique. A GMM is a probabilistic model in which all data points are assumed to be generated by a finite number of Gaussian distributions with unknown parameters. For supervised learning, the Convolution neural network (CNN) was used. CNNs are feedforward networks that were inspired by biological pattern recognition processes. All methods were tested through a series of experiments with real electric motors. Results showed that all methods can detect and classify the motors in several induced operation conditions: healthy, unbalanced, mechanical looseness, misalignment, bent shaft, broken bar, and bearing fault condition. Although all approaches are able to identify the fault, each technique has benefits and limitations that make them better for certain types of applications, therefore, a comparison is also made between the methods.O diagnóstico de falhas é fundamental para qualquer indústria de manutenção, a detecção precoce de falhas pode evitar falhas catastróficas, bem como perda de tempo e dinheiro. Tendo em vista esses objetivos, a análise de vibração através do domínio da frequência é uma técnica madura. Embora bem estabelecidos, os métodos tradicionais envolvem um alto custo de tempo e pessoas para identificar falhas, fazendo com que os métodos de aprendizado de máquina cresçam nos últimos anos. Os métodos de Machine learning (ML) podem ser divididos em dois grandes grupos de aprendizagem: supervisionado e não supervisionado, sendo a principal diferença entre eles é o conjunto de dados que está rotulado ou não. Este estudo apresenta um total de quatro métodos diferentes para detecção e diagnóstico de falhas. A análise da frequência do sinal de vibração foi a primeira abordagem empregada. foi escolhida para validar os resultados futuros dos métodos de ML. O Gaussian Mixture Model (GMM) foi empregado para a técnica não supervisionada. O GMM é um modelo probabilístico em que todos os pontos de dados são considerados gerados por um número finito de distribuições gaussianas com parâmetros desconhecidos. Para a aprendizagem supervisionada, foi utilizada a Convolutional Neural Network (CNN). CNNs são redes feedforward que foram inspiradas por processos de reconhecimento de padrões biológicos. Todos os métodos foram testados por meio de uma série de experimentos com motores elétricos reais. Os resultados mostraram que todos os métodos podem detectar e classificar os motores em várias condições de operação induzida: íntegra, desequilibrado, folga mecânica, desalinhamento, eixo empenado, barra quebrada e condição de falha do rolamento. Embora todas as abordagens sejam capazes de identificar a falha, cada técnica tem benefícios e limitações que as tornam melhores para certos tipos de aplicações, por isso, também e feita uma comparação entre os métodos
    • …
    corecore