3,860 research outputs found

    An approach for detecting power peaks during testing and breaking systematic pathological behavior

    Get PDF
    The verification and validation process of embedded critical systems requires providing evidence of their functional correctness and also that their non-functional behavior stays within limits. In this work, we focus on power peaks, which may cause voltage droops and thus, challenge performance to preserve correct operation upon droops. In this line, the use of complex software and hardware in critical embedded systems jeopardizes the confidence that can be placed on the tests carried out during the campaigns performed at analysis. This is so because it is unknown whether tests have triggered the highest power peaks that can occur during operation and whether any such peak can occur systematically. In this paper we propose the use of randomization, already used for timing analysis of real-time systems, as an enabler to guarantee that (1) tests expose those peaks that can arise during operation and (2) peaks cannot occur systematically inadvertently.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 772773), and the HiPEAC Network of Excellence. MINECO partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).Peer ReviewedPostprint (author's final draft

    Principal Component Analysis in the Era of «Omics» Data

    Get PDF

    Polarization-based Tests of Gravity with the Stochastic Gravitational-Wave Background

    Get PDF
    The direct observation of gravitational waves with Advanced LIGO and Advanced Virgo offers novel opportunities to test general relativity in strong-field, highly dynamical regimes. One such opportunity is the measurement of gravitational-wave polarizations. While general relativity predicts only two tensor gravitational-wave polarizations, general metric theories of gravity allow for up to four additional vector and scalar modes. The detection of these alternative polarizations would represent a clear violation of general relativity. The LIGO-Virgo detection of the binary black hole merger GW170814 has recently offered the first direct constraints on the polarization of gravitational waves. The current generation of ground-based detectors, however, is limited in its ability to sensitively determine the polarization content of transient gravitational-wave signals. Observation of the stochastic gravitational-wave background, in contrast, offers a means of directly measuring generic gravitational-wave polarizations. The stochastic background, arising from the superposition of many individually unresolvable gravitational-wave signals, may be detectable by Advanced LIGO at design-sensitivity. In this paper, we present a Bayesian method with which to detect and characterize the polarization of the stochastic background. We explore prospects for estimating parameters of the background, and quantify the limits that Advanced LIGO can place on vector and scalar polarizations in the absence of a detection. Finally, we investigate how the introduction of new terrestrial detectors like Advanced Virgo aid in our ability to detect or constrain alternative polarizations in the stochastic background. We find that, although the addition of Advanced Virgo does not notably improve detection prospects, it may dramatically improve our ability to estimate the parameters of backgrounds of mixed polarization.Comment: 24 pages, 20 figures; Accepted by PRX. This version includes major changes in response to referee comments and corrects an error in Eq. E

    Smart Technology for Telerehabilitation: A Smart Device Inertial-sensing Method for Gait Analysis

    Get PDF
    The aim of this work was to develop and validate an iPod Touch (4th generation) as a potential ambulatory monitoring system for clinical and non-clinical gait analysis. This thesis comprises four interrelated studies, the first overviews the current available literature on wearable accelerometry-based technology (AT) able to assess mobility-related functional activities in subjects with neurological conditions in home and community settings. The second study focuses on the detection of time-accurate and robust gait features from a single inertial measurement unit (IMU) on the lower back, establishing a reference framework in the process. The third study presents a simple step length algorithm for straight-line walking and the fourth and final study addresses the accuracy of an iPod’s inertial-sensing capabilities, more specifically, the validity of an inertial-sensing method (integrated in an iPod) to obtain time-accurate vertical lower trunk displacement measures. The systematic review revealed that present research primarily focuses on the development of accurate methods able to identify and distinguish different functional activities. While these are important aims, much of the conducted work remains in laboratory environments, with relatively little research moving from the “bench to the bedside.” This review only identified a few studies that explored AT’s potential outside of laboratory settings, indicating that clinical and real-world research significantly lags behind its engineering counterpart. In addition, AT methods are largely based on machine-learning algorithms that rely on a feature selection process. However, extracted features depend on the signal output being measured, which is seldom described. It is, therefore, difficult to determine the accuracy of AT methods without characterizing gait signals first. Furthermore, much variability exists among approaches (including the numbers of body-fixed sensors and sensor locations) to obtain useful data to analyze human movement. From an end-user’s perspective, reducing the amount of sensors to one instrument that is attached to a single location on the body would greatly simplify the design and use of the system. With this in mind, the accuracy of formerly identified or gait events from a single IMU attached to the lower trunk was explored. The study’s analysis of the trunk’s vertical and anterior-posterior acceleration pattern (and of their integrands) demonstrates, that a combination of both signals may provide more nuanced information regarding a person’s gait cycle, ultimately permitting more clinically relevant gait features to be extracted. Going one step further, a modified step length algorithm based on a pendulum model of the swing leg was proposed. By incorporating the trunk’s anterior-posterior displacement, more accurate predictions of mean step length can be made in healthy subjects at self-selected walking speeds. Experimental results indicate that the proposed algorithm estimates step length with errors less than 3% (mean error of 0.80 ± 2.01cm). The performance of this algorithm, however, still needs to be verified for those suffering from gait disturbances. Having established a referential framework for the extraction of temporal gait parameters as well as an algorithm for step length estimations from one instrument attached to the lower trunk, the fourth and final study explored the inertial-sensing capabilities of an iPod Touch. With the help of Dr. Ian Sheret and Oxford Brookes’ spin-off company ‘Wildknowledge’, a smart application for the iPod Touch was developed. The study results demonstrate that the proposed inertial-sensing method can reliably derive lower trunk vertical displacement (intraclass correlations ranging from .80 to .96) with similar agreement measurement levels to those gathered by a conventional inertial sensor (small systematic error of 2.2mm and a typical error of 3mm). By incorporating the aforementioned methods, an iPod Touch can potentially serve as a novel ambulatory monitor system capable of assessing gait in clinical and non-clinical environments

    Polarimetric Imaging of the Uterine Cervix

    Get PDF
    Cervical cancer is the fourth most common cancer in women, with more than half a million women diagnosed each year due to persistent human papillomavirus (HPV) infection and a mortality of 311,000 women. According to the World Cancer Research Fund, developing countries have 84% of the global burden of the disease and 80% of the mortality due to a lack of effective screening programs. Several screening techniques have been developed and implemented to aid in low resource setting cervical screening, however, most require physician interpretation of color images. Other modalities utilize contrast agents to highlight pathological tissue but have small field of view. This dissertation investigates the use of polarimetric imaging techniques to image uterine cervix with particular focus to the needs of underserved communities. We have used Mueller matrix imaging, to noninvasively image the uterine cervix in vivo. Mueller matrix (MM) can provide structural information of the cervix extracellular matrix (ECM) that could be leveraged for early diagnosis of cervical cancer and other pathologies of the uterine cervix. We have developed a Savart-based portable Mueller matrix polarimeter to conduct a pilot study to characterize polarimetrically healthy human cervixes. The results showed high depolarization and retardance, as is expected of healthy tissue. The availability of new equipment, such as microgrid polarized cameras, led to the simplification of the polarimetric setup from a 4 x 4 MM to a reduced 3 x 4 MM. To facilitate image acquisition using this camera, we have devised a novel algorithm capable of decomposing the Mueller Matrix from its reduced (3 x 4) form. The algorithm was compared and shown to provide similar results to two established decomposition methods. Finally, we have used this approach to obtain depolarization and azimuthal angle values of biological tissue including ex vivo samples and in vivo cervix. This works paves the way to non-invasive studies of cervical structure in vivo

    Coordination between arm and leg movements during locomotion

    Get PDF
    To evaluate the contrasting dynamical and biomechanical interpretations of the 2:1 frequency coordination between arm and leg movements that occurs at low walking velocities and the 1:1 frequency coordination that occurs at higher walking velocities, the authors conducted an experiment in which they quantified the effect of walking velocity on the stability of the frequency and phase coordination between the individual limb movements. Spectral analyses revealed the presence of 2:1 frequency coordination as a consistent feature of the data in only 3 out of 8 participants at walking velocities ranging from 1.0 to 2.0 km/h, in spite of the fact that the eigenfrequencies of the arms were rather similar across participants. The degree of interlimb coupling, as indexed by weighted coherence and variability of relative phase, was lower for the arm movements and for ipsilateral and diagonal combinations of arm and leg movements than for the leg movements. Furthermore, the coupling between all pairs of limb movements was found to increase with walking velocity, whereas no clear signs were observed that the switches from 2:1 to 1:1 frequency coordination and vice versa were preceded by loss of stability. Therefore, neither a purely biomechanical nor a purely dynamical model is optimally suited to explain these results. Instead, an integrative model involving elements of both approaches seems to be required
    • 

    corecore