525 research outputs found

    Combining chromosomal arm status and significantly aberrant genomic locations reveals new cancer subtypes

    Get PDF
    Many types of tumors exhibit chromosomal losses or gains, as well as local amplifications and deletions. Within any given tumor type, sample specific amplifications and deletionsare also observed. Typically, a region that is aberrant in more tumors,or whose copy number change is stronger, would be considered as a more promising candidate to be biologically relevant to cancer. We sought for an intuitive method to define such aberrations and prioritize them. We define V, the volume associated with an aberration, as the product of three factors: a. fraction of patients with the aberration, b. the aberrations length and c. its amplitude. Our algorithm compares the values of V derived from real data to a null distribution obtained by permutations, and yields the statistical significance, p value, of the measured value of V. We detected genetic locations that were significantly aberrant and combined them with chromosomal arm status to create a succint fingerprint of the tumor genome. This genomic fingerprint is used to visualize the tumors, highlighting events that are co ocurring or mutually exclusive. We allpy the method on three different public array CGH datasets of Medulloblastoma and Neuroblastoma, and demonstrate its ability to detect chromosomal regions that were known to be altered in the tested cancer types, as well as to suggest new genomic locations to be tested. We identified a potential new subtype of Medulloblastoma, which is analogous to Neuroblastoma type 1.Comment: 34 pages, 3 figures; to appear in Cancer Informatic

    SIRAC: Supervised Identification of Regions of Aberration in aCGH datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Array comparative genome hybridization (aCGH) provides information about genomic aberrations. Alterations in the DNA copy number may cause the cell to malfunction, leading to cancer. Therefore, the identification of DNA amplifications or deletions across tumors may reveal key genes involved in cancer and improve our understanding of the underlying biological processes associated with the disease.</p> <p>Results</p> <p>We propose a supervised algorithm for the analysis of aCGH data and the identification of regions of chromosomal alteration (SIRAC). We first determine the DNA-probes that are important to distinguish the classes of interest, and then evaluate in a systematic and robust scheme if these relevant DNA-probes are closely located, i.e. form a region of amplification/deletion. SIRAC does not need any preprocessing of the aCGH datasets, and requires only few, intuitive parameters.</p> <p>Conclusion</p> <p>We illustrate the features of the algorithm with the use of a simple artificial dataset. The results on two breast cancer datasets show promising outcomes that are in agreement with previous findings, but SIRAC better pinpoints the dissimilarities between the classes of interest.</p

    Massively parallel sequencing in preimplantation and prenatal genetic diagnosis

    Get PDF

    Angiomatous meningiomas have a distinct genetic profile with multiple chromosomal polysomies including polysomy of chromosome 5

    Get PDF
    Meningiomas are a diverse group of tumors with a broad spectrum of histologic features. There are over 12 variants of meningioma, whose genetic features are just beginning to be described. Angiomatous meningioma is a World Health Organization (WHO) meningioma variant with a predominance of blood vessels. They are uncommon and confirming the histopathologic classification can be challenging. Given a lack of biomarkers that define the angiomatous subtype and limited understanding of the genetic changes underlying its tumorigenesis, we compared the genomic characteristics of angiomatous meningioma to more common meningioma subtypes. While typical grade I meningiomas demonstrate monosomy of chromosome 22 or lack copy number aberrations, 13 of 14 cases of angiomatous meningioma demonstrated a distinct copy number profile – polysomies of at least one chromosome, but often of many, especially in chromosomes 5, 13, and 20. WHO grade II atypical meningiomas with angiomatous features have both polysomies and genetic aberrations characteristic of other atypical meningiomas. Sequencing of over 560 cancer-relevant genes in 16 cases of angiomatous meningioma showed that these tumors lack common mutations found in other variants of meningioma. Our study demonstrates that angiomatous meningiomas have distinct genomic features that may be clinically useful for their diagnosis

    Loss of the candidate tumor suppressor ZEB1 (TCF8, ZFHX1A) in Sézary syndrome

    Get PDF
    Cutaneous T-cell lymphoma is a group of incurable extranodal non-Hodgkin lymphomas that develop from the skin-homing CD4+ T cell. Mycosis fungoides and Sézary syndrome are the most common histological subtypes. Although next-generation sequencing data provided significant advances in the comprehension of the genetic basis of this lymphoma, there is not uniform consensus on the identity and prevalence of putative driver genes for this heterogeneous group of tumors. Additional studies may increase the knowledge about the complex genetic etiology characterizing this lymphoma. We used SNP6 arrays and GISTIC algorithm to prioritize a list of focal somatic copy-number alterations in a dataset of multiple sequential samples from 21 Sézary syndrome patients. Our results confirmed a prevalence of significant focal deletions over amplifications: single well-known tumor suppressors, such as TP53, PTEN, and RB1, are targeted by these aberrations. In our cohort, ZEB1 (TCF8, ZFHX1A) spans a deletion having the highest level of significance. In a larger group of 43 patients, we found that ZEB1 is affected by deletions and somatic inactivating mutations in 46.5% of cases; also, we found potentially relevant ZEB1 germline variants. The survival analysis shows a worse clinical course for patients with ZEB1 biallelic inactivation. Multiple abnormal expression signatures were found associated with ZEB1 depletion in Sézary patients we verified that ZEB1 exerts a role in oxidative response of Sézary cells. Our data confirm the importance of deletions in the pathogenesis of cutaneous T-cell lymphoma. The characterization of ZEB1 abnormalities in Sézary syndrome fulfils the criteria of a canonical tumor suppressor gene. Although additional confirmations are needed, our findings suggest, for the first time, that ZEB1 germline variants might contribute to the risk of developing this disease. Also, we provide evidence that ZEB1 activity in Sézary cells, influencing the reactive oxygen species production, affects cell viability and apoptosis

    A Multi-Sample Based Method for Identifying Common CNVs in Normal Human Genomic Structure Using High-Resolution aCGH Data

    Get PDF
    BACKGROUND: It is difficult to identify copy number variations (CNV) in normal human genomic data due to noise and non-linear relationships between different genomic regions and signal intensity. A high-resolution array comparative genomic hybridization (aCGH) containing 42 million probes, which is very large compared to previous arrays, was recently published. Most existing CNV detection algorithms do not work well because of noise associated with the large amount of input data and because most of the current methods were not designed to analyze normal human samples. Normal human genome analysis often requires a joint approach across multiple samples. However, the majority of existing methods can only identify CNVs from a single sample. METHODOLOGY AND PRINCIPAL FINDINGS: We developed a multi-sample-based genomic variations detector (MGVD) that uses segmentation to identify common breakpoints across multiple samples and a k-means-based clustering strategy. Unlike previous methods, MGVD simultaneously considers multiple samples with different genomic intensities and identifies CNVs and CNV zones (CNVZs); CNVZ is a more precise measure of the location of a genomic variant than the CNV region (CNVR). CONCLUSIONS AND SIGNIFICANCE: We designed a specialized algorithm to detect common CNVs from extremely high-resolution multi-sample aCGH data. MGVD showed high sensitivity and a low false discovery rate for a simulated data set, and outperformed most current methods when real, high-resolution HapMap datasets were analyzed. MGVD also had the fastest runtime compared to the other algorithms evaluated when actual, high-resolution aCGH data were analyzed. The CNVZs identified by MGVD can be used in association studies for revealing relationships between phenotypes and genomic aberrations. Our algorithm was developed with standard C++ and is available in Linux and MS Windows format in the STL library. It is freely available at: http://embio.yonsei.ac.kr/~Park/mgvd.php

    Array-based comparative genomic hybridization analysis reveals chromosomal copy number aberrations associated with clinical outcome in canine diffuse large B-cell lymphoma

    Get PDF
    Canine Diffuse Large B-cell Lymphoma (cDLBCL) is an aggressive cancer with variable clinical response. Despite recent attempts by gene expression profiling to identify the dog as a potential animal model for human DLBCL, this tumor remains biologically heterogeneous with no prognostic biomarkers to predict prognosis. The aim of this work was to identify copy number aberrations (CNAs) by high-resolution array comparative genomic hybridization (aCGH) in 12 dogs with newly diagnosed DLBCL. In a subset of these dogs, the genetic profiles at the end of therapy and at relapse were also assessed. In primary DLBCLs, 90 different genomic imbalances were counted, consisting of 46 gains and 44 losses. Two gains in chr13 were significantly correlated with clinical stage. In addition, specific regions of gains and losses were significantly associated to duration of remission. In primary DLBCLs, individual variability was found, however 14 recurrent CNAs (&gt;30%) were identified. Losses involving IGK, IGL and IGH were always found, and gains along the length of chr13 and chr31 were often observed (&gt;41%). In these segments, MYC, LDHB, HSF1, KIT and PDGFR alpha are annotated. At the end of therapy, dogs in remission showed four new CNAs, whereas three new CNAs were observed in dogs at relapse compared with the previous profiles. One ex novo CNA, involving TCR, was present in dogs in remission after therapy, possibly induced by the autologous vaccine. Overall, aCGH identified small CNAs associated with outcome, which, along with future expression studies, may reveal target genes relevant to cDLBCL
    corecore