291 research outputs found

    Energy-Efficient Routing Control Algorithm in Large-Scale WSN for Water Environment Monitoring with Application to Three Gorges Reservoir Area

    Get PDF
    Published version of an article in the journal: The Scientific World Journal. Also available from the publisher at: http://dx.doi.org/10.1155/2014/802915 Open AccessThe typical application backgrounds of large-scale WSN (wireless sensor networks) for the water environment monitoring in the Three Gorges Reservoir are large coverage area and wide distribution. To maximally prolong lifetime of large-scale WSN, a new energy-saving routing algorithm has been proposed, using the method of maximum energy-welfare optimization clustering. Firstly, temporary clusters are formed based on two main parameters, the remaining energy of nodes and the distance between a node and the base station. Secondly, the algorithm adjusts cluster heads and optimizes the clustering according to the maximum energy-welfare of the cluster by the cluster head shifting mechanism. Finally, in order to save node energy efficiently, cluster heads transmit data to the base station in single-hop and multihop way. Theoretical analysis and simulation results show that the proposed algorithm is feasible and advanced. It can efficiently save the node energy, balance the energy dissipation of all nodes, and prolong the network lifetime

    Energy Optimization Efficiency in Wireless Sensor Networks for Forest Fire Detection:: An Innovative Sleep Technique

    Get PDF
    Wireless Sensor Networks (WSNs) have the potential to play a significant role in forest fire detection and prevention. However, limited resources, such as short battery life pose challenges for the energy efficiency and longevity of WSN-based IoT networks. This paper focused on the energy efficiency aspect and proposed the ECP-LEACH protocol to optimize energy consumption in forest fire detection cases. The proposed protocol consists of two main components: a threshold monitoring module and a sleep scheduling module. The threshold monitoring module continuously monitors energy consumption and triggers sleep mode for nodes surpassing the predetermined threshold. The ECP-LEACH protocol offers a promising solution for improving energy efficiency in WSN-based IoT networks for forest fire detection. By optimizing sleep scheduling and duty cycles, the ECP-LEACH protocol enables significant energy savings and extended network lifetim

    A novel nomadic people optimizer-based energy-efficient routing for WBAN

    Get PDF
    In response to user demand for wearable devices, several WBAN deployments now call for effective communication processes for remote data monitoring in real time. Using sensor networks, intelligent wearable devices have exchanged data that has benefited in the evaluation of possible security hazards. If smart wearables in sensor networks use an excessive amount of power during data transmission, both network lifetime and data transmission performance may suffer. Despite the network's effective data transmission, smart wearable patches include data that has been combined from several sources utilizing common aggregators. Data analysis requires careful network lifespan control throughout the aggregation phase. By using the Nomadic People Optimizer-based Energy-Efficient Routing (NPO-EER) approach, which effectively allows smart wearable patches by minimizing data aggregation time and eliminating routing loops, the network lifetime has been preserved in this research. The obtained findings showed that the NPO method had a great solution. Estimated Aggregation time, Energy consumption, Delay, and throughput have all been shown to be accurate indicators of the system's performance
    • …
    corecore