20,406 research outputs found

    Application of Decision Diagrams for Information Storage and Retrieval

    Get PDF
    Technology is improving at an amazing pace and one reason for this advancement is because of unprecedented growth in the field of Information Technology and also in Digital Integrated Circuit technology over the past few decades. The size of a typical modern database is in the order of high ends of gigabytes and even terabytes. Researchers were successful in designing complex databases but there is still lot of activity on effectively making use of this stored information. There have been significant advancements in the field of Logic optimization and also in Information storage and retrieval but there has been very little transfer of these methods. The purpose of this study is to investigate the use of powerful Computer Aided Design (CAD) techniques for efficient information storage and retrieval. In the work presented in this thesis, it is shown that Decision Diagrams can be used for efficient data storage and information retrieval. An efficient technique is proposed for each of the two key areas of research in Database systems known as Query Optimization and Datamining . Encouraging results are obtained indicating that using hardware techniques for information processing can be a new approach for solving these problems. An SQL query is represented using a hardware data structure known as an AND/OR graph and an SQL parser is interfaced with AND/OR package to achieve query optimization. Optimization using AND/OR graphs works only in the Boolean domain and to make the process of query optimization more complete it has to be investigated in Multivalued domain. The possibility of using MDD as a data structure to represent the query in the multi valued domain is discussed and a synthesis technique is developed to synthesize Multi Valued Logic Networks using MDD. Another useful data structure known as BDD can be used to store the large transaction files used in datamining applications very effectively

    Applications of Nonclassical Logic Methods for Purposes of Knowledge Discovery and Data Mining

    Get PDF
    * The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.Methods for solution of a large class of problems on the base of nonclassical, multiple-valued, and probabilistic logics have been discussed. A theory of knowledge about changing knowledge, of defeasible inference, and network approach to an analogous derivation have been suggested. A method for regularity search, logic-axiomatic and logic-probabilistic methods for learning of terms and pattern recognition in the case of multiple-valued logic have been described and generalized. Defeasible analogical inference and new forms of inference using exclusions are considered. The methods are applicable in a broad range of intelligent systems

    Learning and Designing Stochastic Processes from Logical Constraints

    Get PDF
    Stochastic processes offer a flexible mathematical formalism to model and reason about systems. Most analysis tools, however, start from the premises that models are fully specified, so that any parameters controlling the system's dynamics must be known exactly. As this is seldom the case, many methods have been devised over the last decade to infer (learn) such parameters from observations of the state of the system. In this paper, we depart from this approach by assuming that our observations are {\it qualitative} properties encoded as satisfaction of linear temporal logic formulae, as opposed to quantitative observations of the state of the system. An important feature of this approach is that it unifies naturally the system identification and the system design problems, where the properties, instead of observations, represent requirements to be satisfied. We develop a principled statistical estimation procedure based on maximising the likelihood of the system's parameters, using recent ideas from statistical machine learning. We demonstrate the efficacy and broad applicability of our method on a range of simple but non-trivial examples, including rumour spreading in social networks and hybrid models of gene regulation

    Metastability-Containing Circuits

    Get PDF
    In digital circuits, metastability can cause deteriorated signals that neither are logical 0 or logical 1, breaking the abstraction of Boolean logic. Unfortunately, any way of reading a signal from an unsynchronized clock domain or performing an analog-to-digital conversion incurs the risk of a metastable upset; no digital circuit can deterministically avoid, resolve, or detect metastability (Marino, 1981). Synchronizers, the only traditional countermeasure, exponentially decrease the odds of maintained metastability over time. Trading synchronization delay for an increased probability to resolve metastability to logical 0 or 1, they do not guarantee success. We propose a fundamentally different approach: It is possible to contain metastability by fine-grained logical masking so that it cannot infect the entire circuit. This technique guarantees a limited degree of metastability in---and uncertainty about---the output. At the heart of our approach lies a time- and value-discrete model for metastability in synchronous clocked digital circuits. Metastability is propagated in a worst-case fashion, allowing to derive deterministic guarantees, without and unlike synchronizers. The proposed model permits positive results and passes the test of reproducing Marino's impossibility results. We fully classify which functions can be computed by circuits with standard registers. Regarding masking registers, we show that they become computationally strictly more powerful with each clock cycle, resulting in a non-trivial hierarchy of computable functions

    Nonlinear Switched-Capacitor Networks: Basic Principles and Piecewise-Linear Design

    Get PDF
    The applicability of switched-capacitor (SC) components to the design of nonlinear networks is extensively discussed in this paper. The main objective is to show that SC's can be efficiently used for designing nonlinear networks. Moreover, the design methods to be proposed here are fully compatible with general synthesis methods for nonlinear n -ports. Different circuit alternatives are given and their potentials are evaluated.Office of Naval Research (USA) N00014-76-C-0572Comisión Interministerial de Ciencia y Tecnología 0235/81Semiconductor Research Corporation (USA) 82-11-00

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented
    corecore