80 research outputs found

    Phase Synthesis Using Coupled Phase-Locked Loops

    Get PDF
    Phase Synthesis is a fundamental operation in Smart Antennas and other Phased Array systems based on beamforming. There are increasing commercial applications for Integrated Phased Arrays due to their low cost, size and power and also because the RF and digital signal processing can be performed on the same chip. These low cost beamforming applications have augmented interest in Coupled Phase Locked Loop (CPLL) systems for Phase Synthesis. Previous work on the implementation of Phase Synthesis systems using Coupled PLLs for low cost beamforming had the constraint of a limited phase range of ±90°. The idea behind the thesis is that this phase synthesis range can be increased to ±180° through the use of PLLs employing Phase Frequency Detectors(PFDs), which is a significant improvement over conventional coupled-PLL systems. This work presents the detailed design and measurement results for a phase synthesizer using Coupled PLLs for achieving phase shift in the range of ±180°. Several Coupled PLL architectures are investigated and their advantages and limitations are evaluated in terms of frequency controllability, phase difference synthesis control and phase noise of the systems. A two-PLL system implementation using off the shelf components is presented, which generates a steady-state phase difference in the range ±180° using an adjustable DC control current. This is the proof of concept for doing an IC design for a Coupled Phase Locked Loop system. Commercial applications in the Wireless Medical Telemetry Service (WMTS) band motivate the design of a CPLL system in the 608-614 MHz band. The design methodology is presented which shows the flowchart of the IC design process from the system design specifications to the transistor level design. MATLAB simulations are presented to model the system performance quickly. VerilogA modeling of the CPLL system is performed followed by the IC design of the system and each block is simulated under different process and temperature corners. The transistor level design is then evaluated for its performance in terms of phase difference synthesis and phase noise and compared with the initial MATLAB analysis and improved iteratively. The CPLL system is implemented in IBM 130nm CMOS process and consumes 40mW of power from a 1.2V supply with a phase noise performance of -88 dBc/Hz for 177° phase generation

    A LINEARIZATION METHOD FOR A UWB VCO-BASED CHIRP GENERATOR USING DUAL COMPENSATION

    Get PDF
    Ultra-Wideband (UWB) chirp generators are used on Frequency Modulated Continuous Wave (FMCW) radar systems for high-resolution and high-accuracy range measurements. At the Center for Remote Sensing of Ice Sheets (CReSIS), we have developed two UWB radar sensors for high resolution measurements of surface elevation and snow cover over Greenland and Antarctica. These radar systems are routinely operated from both surface and airborne platforms. Low cost implementations of UWB chirp generators are possible using an UWB Voltage Controlled Oscillator (VCO). VCOs possess several advantages over other competing technologies, but their frequency-voltage tuning characteristics are inherently non-linear. This nonlinear relationship between the tuning voltage and the output frequency should be corrected with a linearization system to implement a linear frequency modulated (LFM) waveform, also known as a chirp. If the waveform is not properly linearized, undesired additional frequency modulation is found in the waveform. This additional frequency modulation results in undesired sidebands at the frequency spectrum of the Intermediate Frequency (IF) stage of the FMCW radar. Since the spectrum of the filtered IF stage represents the measured range, the uncorrected nonlinear behavior of the VCO will cause a degradation of the range sensing performance of a FMCW radar. This issue is intensified as the chirp rate and nominal range of the target increase. A linearization method has been developed to linearize the output of a VCO-based chirp generator with 6 GHz of bandwidth. The linearization system is composed of a Phase Lock Loop (PLL) and an external compensation added to the loop. The nonlinear behavior of the VCO was treated as added disturbances to the loop, and a wide loop bandwidth PLL was designed for wideband compensation of these disturbances. Moreover, the PLL requires a loop filter able to attenuate the reference spurs. The PLL has been designed with a loop bandwidth as wide as possible while maintaining the reference spur level below 35 dBc. Several design considerations were made for the large loop bandwidth design. Furthermore, the large variations in the tuning sensitivity of the oscillator forced a design with a large phase margin at the average tuning sensitivity. This design constraint degraded the tracking performance of the PLL. A second compensation signal, externally generated, was added to the compensation signal of the PLL. By adding a compensation signal, which was not affected by the frequency response effects of the loop compensation, the loop tracking error is reduced. This technique enabled us to produce an output chirp signal that is a much closer replica of the scaled version of the reference signal. Furthermore, a type 1 PLL was chosen for improved transient response, compared to that of the type 2 PLL. This type of PLL requires an external compensation to obtain a finite steady state error when applying a frequency ramp to the input. The external compensation signal required to solve this issue was included in the second compensation signal mentioned above. Measurements for the PLL performance and the chirp generator performance were performed in the laboratory using a radar demonstrator. The experimental results show that the designed loop bandwidth was successfully achieved without significantly increasing the spurious signal level. The chirp generator measurements show a direct relationship between the bandwidth of the external compensation and the range resolution performance

    A Bang-Bang All-Digital PLL for Frequency Synthesis

    Get PDF
    abstract: Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily analog in nature and since the development of the charge pump PLL, they have almost exclusively been analog. Recently, however, much research has been focused on ADPLLs because of their scalability, flexibility and higher noise immunity. This research investigates some of the latest all-digital PLL architectures and discusses the qualities and tradeoffs of each. A highly flexible and scalable all-digital PLL based frequency synthesizer is implemented in 180 nm CMOS process. This implementation makes use of a binary phase detector, also commonly called a bang-bang phase detector, which has potential of use in high-speed, sub-micron processes due to the simplicity of the phase detector which can be implemented with a simple D flip flop. Due to the nonlinearity introduced by the phase detector, there are certain performance limitations. This architecture incorporates a separate frequency control loop which can alleviate some of these limitations, such as lock range and acquisition time.Dissertation/ThesisM.S. Electrical Engineering 201

    A Fully Differential Phase-Locked Loop With Reduced Loop Bandwidth Variation

    Get PDF
    Phase-Locked Loops (PLLs) are essential building blocks to wireless communications as they are responsible for implementing the frequency synthesizer within a wireless transceiver. In order to maintain the rapid pace of development thus far seen in wireless technology, the PLL must develop accordingly to meet the increasingly demanding requirements imposed on it by today's (and tomorrows) wireless devices. Specically this entails meeting stringent noise specications imposed by modern wireless standards, meeting low power consumption budgets to prolong battery lifetimes, operating under reduced supply voltages imposed by modern technology nodes and within the noisy environments of complex system-on-chip (SOC) designs, all in addition to consuming as little silicon area as possible. The ability of the PLL to achieve the above is thus key to its continual progress in enabling wireless technology achieve increasingly powerful products which increasingly benet our daily lives. This thesis furthers the development of PLLs with respect to meeting the challenges imposed upon it by modern wireless technology, in two ways. Firstly, the thesis describes in detail the advantages to be gained through employing a fully dierential PLL. Specically, such PLLs are shown to achieve low noise performance, consume less silicon area than their conventional counterparts whilst consuming similar power, and being better suited to the low supply voltages imposed by continual technology downsizing. Secondly, the thesis proposes a sub-banded VCO architecture which, in addition to satisfying simultaneous requirements for large tuning ranges and low phase noise, achieves signicant reductions in PLL loop bandwidth variation. First and foremost, this improves on the stability of the PLL in addition to improving its dynamic locking behaviour whilst oering further improvements in overall noise performance. Since the proposed sub-banded architecture requires no additional power over a conventional sub-banded architecture, the solution thus remains attractive to the realm of low power design. These two developments combine to form a fully dierential PLL with reduced loop bandwidth variation. As such, the resulting PLL is well suited to meeting the increasingly demanding requirements imposed on it by today's (and tomorrows) wireless devices, and thus applicable to the continual development of wireless technology in benetting our daily lives

    Dissertation review on a new control perspective on phase locked loops

    Get PDF
    The technique of phase-locked loop (PLL), an essential means for online frequency detection of incoming signal, which is widely used in our modern day communication system. PLL is traditionally viewed as a non-linear feedback control loop that will automatically locks the adjustable frequency of a local oscillator in reference to the incoming signal. However, the classic PLL technique has reviewed its first sign of weakness, limited convergence performance and complex in structure implementation. To overcome these weaknesses and to improve its current performance, the final outcome of the project is to bring about a better developed idea in frequency estimation compared with the present PLL technique.A new approach known as adaptive observer method, which allowed direct estimation on frequency of an incoming signal, was recently proposed in the control literature. The underlying principle of this project is to investigate the possible use of adaptive observer method for detecting frequencies directly from any sinusoidal signals, and as well as to improve its ability in terms of better performance. Both classic PLL technique and adaptive observer method are compared through several aspects, for instance theoretical study and software simulation. However, due to adaptive observer method is significantly over-performed the PLL technique at the stage of simulation

    An Exploration of Radiation Effects on Low-Node, High-Speed, Mixed-Signal Integrated Circuits

    Get PDF
    As circuits decrease in size and increase in speed, there will be a push to use higher performance electronics in the space sector, military sector, and the energy sector. As technology nodes decrease, they typically become more sensitive to radiation effects so extra design techniques must be utilized in order to make the circuits immune to radiation effects. Single Event Effects (SEEs) are a major concern as they will upset the transient response of the system. Total Ionizing Dose (TID) effects are also a concern as they will degrade the performance of the device until failure over a long period of time. Voltage Controlled Oscillators (VCOs) and Phase-Locked Loops (PLLs) are critical in serial communication systems and must perform in the 10s of Gigahertz (GHz) range. This thesis focused on implementing a varactor scheme in order to reduce the sensitive area of the varactors inside of the VCO and implementing Triple Modular Redundancy in the digital blocks for the PLL to make it immune the Single Event Effects. A SEE analysis was done on both the VCO and PLL to ensure radiation tolerance along with measuring the overall electrical characteristics. The radiation hardened VCO was found to have a nominal tuning range of 14GHz to 17.7GHz with a Phase Noise performance of -124dBc/Hz. The PLL was found to have a total peak to peak jitter performance at a Q of 7.5 of approximately 400fs with a rms jitter of 40fs and deterministic jitter equal to approximately 200fs. The total power consumption is 20mW for the PLL and a total area of 0.046mm^2

    High Performance Local Oscillator Design for Next Generation Wireless Communication

    Get PDF
    Local Oscillator (LO) is an essential building block in modern wireless radios. In modern wireless radios, LO often serves as a reference of the carrier signal to modulate or demod- ulate the outgoing or incoming data. The LO signal should be a clean and stable source, such that the frequency or timing information of the carrier reference can be well-defined. However, as radio architecture evolves, the importance of LO path design has become much more important than before. Of late, many radio architecture innovations have exploited sophisticated LO generation schemes to meet the ever-increasing demands of wireless radio performances. The focus of this thesis is to address challenges in the LO path design for next-generation high performance wireless radios. These challenges include (1) Congested spectrum at low radio frequency (RF) below 5GHz (2) Continuing miniaturization of integrated wireless radio, and (3) Fiber-fast (>10Gb/s) mm-wave wireless communication. The thesis begins with a brief introduction of the aforementioned challenges followed by a discussion of the opportunities projected to overcome these challenges. To address the challenge of congested spectrum at frequency below 5GHz, novel ra- dio architectures such as cognitive radio, software-defined radio, and full-duplex radio have drawn significant research interest. Cognitive radio is a radio architecture that opportunisti- cally utilize the unused spectrum in an environment to maximize spectrum usage efficiency. Energy-efficient spectrum sensing is the key to implementing cognitive radio. To enable energy-efficient spectrum sensing, a fast-hopping frequency synthesizer is an essential build- ing block to swiftly sweep the carrier frequency of the radio across the available spectrum. Chapter 2 of this thesis further highlights the challenges and trade-offs of the current LO gen- eration scheme for possible use in sweeping LO-based spectrum analysis. It follows by intro- duction of the proposed fast-hopping LO architecture, its implementation and measurement results of the validated prototype. Chapter 3 proposes an embedded phase-shifting LO-path design for wideband RF self-interference cancellation for full-duplex radio. It demonstrates a synergistic design between the LO path and signal to perform self-interference cancellation. To address the challenge of continuing miniaturization of integrated wireless radio, ring oscillator-based frequency synthesizer is an attractive candidate due to its compactness. Chapter 4 discussed the difficulty associated with implementing a Phase-Locked Loop (PLL) with ultra-small form-factor. It further proposes the concept sub-sampling PLL with time- based loop filter to address these challenges. A 65nm CMOS prototype and its measurement result are presented for validation of the concept. In shifting from RF to mm-wave frequencies, the performance of wireless communication links is boosted by significant bandwidth and data-rate expansion. However, the demand for data-rate improvement is out-pacing the innovation of radio architectures. A >10Gb/s mm-wave wireless communication at 60GHz is required by emerging applications such as virtual-reality (VR) headsets, inter-rack data transmission at data center, and Ultra-High- Definition (UHD) TV home entertainment systems. Channel-bonding is considered to be a promising technique for achieving >10Gb/s wireless communication at 60GHz. Chapter 5 discusses the fundamental radio implementation challenges associated with channel-bonding for 60GHz wireless communication and the pros and cons of prior arts that attempted to address these challenges. It is followed by a discussion of the proposed 60GHz channel- bonding receiver, which utilizes only a single PLL and enables both contiguous and non- contiguous channel-bonding schemes. Finally, Chapter 6 presents the conclusion of this thesis

    Low jitter phase-locked loop clock synthesis with wide locking range

    Get PDF
    The fast growing demand of wireless and high speed data communications has driven efforts to increase the levels of integration in many communications applications. Phase noise and timing jitter are important design considerations for these communications applications. The desire for highly complex levels of integration using low cost CMOS technologies works against the minimization of timing jitter and phase noise for communications systems which employ a phase-locked loop for frequency and clock synthesis with on-chip VCO. This dictates an integrated CMOS implementation of the VCO with very low phase noise performance. The ring oscillator VCOs based on differential delay cell chains have been used successfully in communications applications, but thermal noise induced phase noise have to be minimized in order not to limit their applicability to some applications which impose stringent timing jitter and phase noise requirements on the PLL clock synthesizer. Obtaining lower timing jitter and phase noise at the PLL output also requires the minimization of noise in critical circuit design blocks as well as the optimization of the loop bandwidth of the PLL. In this dissertation the fundamental performance limits of CMOS PLL clock synthesizers based on ring oscillator VCOs are investigated. The effect of flicker and thermal noise in MOS transistors on timing jitter and phase noise are explored, with particular emphasis on source coupled NMOS differential delay cells with symmetric load elements. Several new circuit architectures are employed for the charge pump circuit and phase-frequency detector (PFD) to minimize the timing jitter due to the finite dead zone in the PFD and the current mismatch in the charge pump circuit. The selection of the optimum PLL loop bandwidth is critical in determining the phase noise performance at the PLL output. The optimum loop bandwidth and the phase noise performance of the PLL is determined using behavioral simulations. These results are compared with transistor level simulated results and experimental results for the PLL clock synthesizer fabricated in a 0.35 µm CMOS technology with good agreement. To demonstrate the proposed concept, a fully integrated CMOS PLL clock synthesizer utilizing integer-N frequency multiplier technique to synthesize several clock signals in the range of 20-400 MHz with low phase noise was designed. Implemented in a standard 0.35-µm N-well CMOS process technology, the PLL achieves a period jitter of 6.5-ps (rms) and 38-ps (peak-to-peak) at 216 MHz with a phase noise of -120 dBc/Hz at frequency offsets above 10 KHz. The specific research contributions of this work include (1) proposing, designing, and implementing a new charge pump circuit architecture that matches current levels and therefore minimizes one source of phase noise due to fluctuations in the control voltage of the VCO, (2) an improved phase-frequency detector architecture which has improved characteristics in lock condition, (3) an improved ring oscillator VCO with excellent thermal noise induced phase noise characteristics, (4) the application of selfbiased techniques together with fixed bias to CMOS low phase noise PLL clock synthesizer for digital video communications ,and (5) an analytical model that describes the phase noise performance of the proposed VCO and PLL clock synthesizer

    Hybrid DDS-PLL based reconfigurable oscillators with high spectral purity for cognitive radio

    Get PDF
    Analytical, design and simulation studies on the performance optimization of reconfigurable architecture of a Hybrid DDS – PLL are presented in this thesis. The original contributions of this thesis are aimed towards the DDS, the dithering (spur suppression) scheme and the PLL. A new design of Taylor series-based DDS that reduces the dynamic power and number of multipliers is a significant contribution of this thesis. This thesis compares dynamic power and SFDR achieved in the design of varieties of DDS such as Quartic, Cubic, Linear and LHSC. This thesis proposes two novel schemes namely “Hartley Image Suppression” and “Adaptive Sinusoidal Interference Cancellation” overcoming the low noise floor of traditional dithering schemes. The simulation studies on a Taylor series-based DDS reveal an improvement in SFDR from 74 dB to 114 dB by using Least Mean Squares -Sinusoidal Interference Canceller (LM-SIC) with the noise floor maintained at -200 dB. Analytical formulations have been developed for a second order PLL to relate the phase noise to settling time and Phase Margin (PM) as well as to relate jitter variance and PM. New expressions relating phase noise to PM and lock time to PM are derived. This thesis derives the analytical relationship between the roots of the characteristic equation of a third order PLL and its performance metrics like PM, Gardner’s stability factor, jitter variance, spur gain and ratio of noise power to carrier power. This thesis presents an analysis to relate spur gain and capacitance ratio of a third order PLL. This thesis presents an analytical relationship between the lock time and the roots of its characteristic equation of a third order PLL. Through Vieta’s circle and Vieta’s angle, the performance metrics of a third order PLL are related to the real roots of its characteristic equation
    • …
    corecore