34 research outputs found

    An Application of the Feferman-Vaught Theorem to Automata and Logics for<br> Words over an Infinite Alphabet

    Full text link
    We show that a special case of the Feferman-Vaught composition theorem gives rise to a natural notion of automata for finite words over an infinite alphabet, with good closure and decidability properties, as well as several logical characterizations. We also consider a slight extension of the Feferman-Vaught formalism which allows to express more relations between component values (such as equality), and prove related decidability results. From this result we get new classes of decidable logics for words over an infinite alphabet.Comment: 24 page

    Logics of Finite Hankel Rank

    Full text link
    We discuss the Feferman-Vaught Theorem in the setting of abstract model theory for finite structures. We look at sum-like and product-like binary operations on finite structures and their Hankel matrices. We show the connection between Hankel matrices and the Feferman-Vaught Theorem. The largest logic known to satisfy a Feferman-Vaught Theorem for product-like operations is CFOL, first order logic with modular counting quantifiers. For sum-like operations it is CMSOL, the corresponding monadic second order logic. We discuss whether there are maximal logics satisfying Feferman-Vaught Theorems for finite structures.Comment: Appeared in YuriFest 2015, held in honor of Yuri Gurevich's 75th birthday. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23534-9_1

    Model Checking Synchronized Products of Infinite Transition Systems

    Full text link
    Formal verification using the model checking paradigm has to deal with two aspects: The system models are structured, often as products of components, and the specification logic has to be expressive enough to allow the formalization of reachability properties. The present paper is a study on what can be achieved for infinite transition systems under these premises. As models we consider products of infinite transition systems with different synchronization constraints. We introduce finitely synchronized transition systems, i.e. product systems which contain only finitely many (parameterized) synchronized transitions, and show that the decidability of FO(R), first-order logic extended by reachability predicates, of the product system can be reduced to the decidability of FO(R) of the components. This result is optimal in the following sense: (1) If we allow semifinite synchronization, i.e. just in one component infinitely many transitions are synchronized, the FO(R)-theory of the product system is in general undecidable. (2) We cannot extend the expressive power of the logic under consideration. Already a weak extension of first-order logic with transitive closure, where we restrict the transitive closure operators to arity one and nesting depth two, is undecidable for an asynchronous (and hence finitely synchronized) product, namely for the infinite grid.Comment: 18 page

    Model checking synchronized products of infinite transition systems

    Get PDF
    Abstract. Formal verification using the model checking paradigm has to deal with two aspects: The system models are structured, often as products of components, and the specification logic has to be expressive enough to allow the formalization of reachability properties. The present paper is a study on what can be achieved for infinite transition systems under these premises. As models we consider products of infinite transition systems with different synchronization constraints. We introduce finitely synchronized transition systems, i.e. product systems which contain only finitely many (parameterized) synchronized transitions, and show that the decidability of FO(R), first-order logic extended by reachability predicates, of the product system can be reduced to the decidability of FO(R) of the components. This result is optimal in the following sense: (1) If we allow semifinite synchronization, i.e. just in one component infinitely many transitions are synchronized, the FO(R)-theory of the product system is in general undecidable. (2) We cannot extend the expressive power of the logic under consideration. Already a weak extension of firstorder logic with transitive closure, where we restrict the transitive closure operators to arity one and nesting depth two, is undecidable for an asynchronous (and hence finitely synchronized) product, namely for the infinite grid. 1

    Trees over Infinite Structures and Path Logics with Synchronization

    Full text link
    We provide decidability and undecidability results on the model-checking problem for infinite tree structures. These tree structures are built from sequences of elements of infinite relational structures. More precisely, we deal with the tree iteration of a relational structure M in the sense of Shelah-Stupp. In contrast to classical results where model-checking is shown decidable for MSO-logic, we show decidability of the tree model-checking problem for logics that allow only path quantifiers and chain quantifiers (where chains are subsets of paths), as they appear in branching time logics; however, at the same time the tree is enriched by the equal-level relation (which holds between vertices u, v if they are on the same tree level). We separate cleanly the tree logic from the logic used for expressing properties of the underlying structure M. We illustrate the scope of the decidability results by showing that two slight extensions of the framework lead to undecidability. In particular, this applies to the (stronger) tree iteration in the sense of Muchnik-Walukiewicz.Comment: In Proceedings INFINITY 2011, arXiv:1111.267

    Order-Invariant Types and their Applications

    Get PDF
    Our goal is to show that the standard model-theoretic concept of types can be applied in the study of order-invariant properties, i.e., properties definable in a logic in the presence of an auxiliary order relation, but not actually dependent on that order relation. This is somewhat surprising since order-invariant properties are more of a combinatorial rather than a logical object. We provide two applications of this notion. One is a proof, from the basic principles, of a theorem by Courcelle stating that over trees, order-invariant MSO properties are expressible in MSO with counting quantifiers. The other is an analog of the Feferman-Vaught theorem for order-invariant properties

    Gaifman Normal Forms for Counting Extensions of First-Order Logic

    Get PDF
    We consider the extension of first-order logic FO by unary counting quantifiers and generalise the notion of Gaifman normal form from FO to this setting. For formulas that use only ultimately periodic counting quantifiers, we provide an algorithm that computes equivalent formulas in Gaifman normal form. We also show that this is not possible for formulas using at least one quantifier that is not ultimately periodic. Now let d be a degree bound. We show that for any formula phi with arbitrary counting quantifiers, there is a formula gamma in Gaifman normal form that is equivalent to phi on all finite structures of degree <= d. If the quantifiers of phi are decidable (decidable in elementary time, ultimately periodic), gamma can be constructed effectively (in elementary time, in worst-case optimal 3-fold exponential time). For the setting with unrestricted degree we show that by using our Gaifman normal form for formulas with only ultimately periodic counting quantifiers, a known fixed-parameter tractability result for FO on classes of structures of bounded local tree-width can be lifted to the extension of FO with ultimately periodic counting quantifiers (a logic equally expressive as FO+MOD, i.e., first-oder logic with modulo-counting quantifiers)

    Decidability Results for the Boundedness Problem

    Full text link
    We prove decidability of the boundedness problem for monadic least fixed-point recursion based on positive monadic second-order (MSO) formulae over trees. Given an MSO-formula phi(X,x) that is positive in X, it is decidable whether the fixed-point recursion based on phi is spurious over the class of all trees in the sense that there is some uniform finite bound for the number of iterations phi takes to reach its least fixed point, uniformly across all trees. We also identify the exact complexity of this problem. The proof uses automata-theoretic techniques. This key result extends, by means of model-theoretic interpretations, to show decidability of the boundedness problem for MSO and guarded second-order logic (GSO) over the classes of structures of fixed finite tree-width. Further model-theoretic transfer arguments allow us to derive major known decidability results for boundedness for fragments of first-order logic as well as new ones

    Algorithmic Meta-Theorems

    Full text link
    Algorithmic meta-theorems are general algorithmic results applying to a whole range of problems, rather than just to a single problem alone. They often have a "logical" and a "structural" component, that is they are results of the form: every computational problem that can be formalised in a given logic L can be solved efficiently on every class C of structures satisfying certain conditions. This paper gives a survey of algorithmic meta-theorems obtained in recent years and the methods used to prove them. As many meta-theorems use results from graph minor theory, we give a brief introduction to the theory developed by Robertson and Seymour for their proof of the graph minor theorem and state the main algorithmic consequences of this theory as far as they are needed in the theory of algorithmic meta-theorems
    corecore