95,459 research outputs found

    Surprise: An Alternative Qualitative Uncertainty Model

    Get PDF
    This dissertation embodies a study of the concept of surprise as a base for constructing qualitative calculi for representing and reasoning about uncertain knowledge. Two functions are presented, kappa++} and z, which construct qualitative ranks for events by obtaining the order of magnitude abstraction of the degree of surprise associated with them. The functions use natural numbers to classify events based their associated surprise and aim at providing a ranking that improves those provided by existing ranking functions. This in turn enables the use of such functions in an a la carte probabilistic system where one can choose the level of detail required to represent uncertain knowledge depending on the requirements of the application. The proposed ranking functions are defined along with surprise-update models associated with them. The reasoning mechanisms associated with the functions are developed mathematically and graphically. The advantages and expected limitations of both functions are compared with respect to each other and with existing ranking functions in the context of a bioinformatics application known as \u27\u27reverse engineering of genetic regulatory networks\u27\u27 in which the relations among various genetic components are discovered through the examination of a large amount of collected data. The ranking functions are examined in this context via graphical models which are exclusively developed or this purpose and which utilize the developed functions to represent uncertain knowledge at various levels of details

    ArchOptions: A Real Options-Based Model for Predicting the Stability of Software Architectures

    Get PDF
    Architectural stability refers to the extent an architecture is flexible to endure evolutionary changes in stakeholders\' requirements and the environment. We assume that the primary goal of software architecture is to guide the system\'s evolution. We contribute to a novel model that exploits options theory to predict architectural stability. The model is predictive: it provides \"insights\" on the evolution of the software system based on valuing the extent an architecture can endure a set of likely evolutionary changes. The model builds on Black and Scholes financial options theory (Noble Prize wining) to value such extent. We show how we have derived the model: the analogy and assumptions made to reach the model, its formulation, and possible interpretations. We refer to this model as ArchOptions

    Rigorously assessing software reliability and safety

    Get PDF
    This paper summarises the state of the art in the assessment of software reliability and safety ("dependability"), and describes some promising developments. A sound demonstration of very high dependability is still impossible before operation of the software; but research is finding ways to make rigorous assessment increasingly feasible. While refined mathematical techniques cannot take the place of factual knowledge, they can allow the decision-maker to draw more accurate conclusions from the knowledge that is available

    What If People Learn Requirements Over Time? A Rough Introduction to Requirements Economics

    Get PDF
    The overall objective of Requirements Engineering is to specify, in a systematic way, a system that satisfies the expectations of its stakeholders. Despite tremendous effort in the field, recent studies demonstrate this is objective is not always achieved. In this paper, we discuss one particularly challenging factor to Requirements Engineering projects, namely the change of requirements. We proposes a rough discussion of how learning and time explain requirements changes, how it can be introduced as a key variable in the formulation of the Requirements Engineering Problem, and how this induces costs for a requirements engineering project. This leads to a new discipline of requirements economics
    • …
    corecore