22,351 research outputs found

    Roadmap for Reliable Ensemble Forecasting of the Sun-Earth System

    Full text link
    The authors of this report met on 28-30 March 2018 at the New Jersey Institute of Technology, Newark, New Jersey, for a 3-day workshop that brought together a group of data providers, expert modelers, and computer and data scientists, in the solar discipline. Their objective was to identify challenges in the path towards building an effective framework to achieve transformative advances in the understanding and forecasting of the Sun-Earth system from the upper convection zone of the Sun to the Earth's magnetosphere. The workshop aimed to develop a research roadmap that targets the scientific challenge of coupling observations and modeling with emerging data-science research to extract knowledge from the large volumes of data (observed and simulated) while stimulating computer science with new research applications. The desire among the attendees was to promote future trans-disciplinary collaborations and identify areas of convergence across disciplines. The workshop combined a set of plenary sessions featuring invited introductory talks and workshop progress reports, interleaved with a set of breakout sessions focused on specific topics of interest. Each breakout group generated short documents, listing the challenges identified during their discussions in addition to possible ways of attacking them collectively. These documents were combined into this report-wherein a list of prioritized activities have been collated, shared and endorsed.Comment: Workshop Repor

    Machine Learning for the Geosciences: Challenges and Opportunities

    Full text link
    Geosciences is a field of great societal relevance that requires solutions to several urgent problems facing our humanity and the planet. As geosciences enters the era of big data, machine learning (ML) -- that has been widely successful in commercial domains -- offers immense potential to contribute to problems in geosciences. However, problems in geosciences have several unique challenges that are seldom found in traditional applications, requiring novel problem formulations and methodologies in machine learning. This article introduces researchers in the machine learning (ML) community to these challenges offered by geoscience problems and the opportunities that exist for advancing both machine learning and geosciences. We first highlight typical sources of geoscience data and describe their properties that make it challenging to use traditional machine learning techniques. We then describe some of the common categories of geoscience problems where machine learning can play a role, and discuss some of the existing efforts and promising directions for methodological development in machine learning. We conclude by discussing some of the emerging research themes in machine learning that are applicable across all problems in the geosciences, and the importance of a deep collaboration between machine learning and geosciences for synergistic advancements in both disciplines.Comment: Under review at IEEE Transactions on Knowledge and Data Engineerin

    Big Data Analytics for Dynamic Energy Management in Smart Grids

    Full text link
    The smart electricity grid enables a two-way flow of power and data between suppliers and consumers in order to facilitate the power flow optimization in terms of economic efficiency, reliability and sustainability. This infrastructure permits the consumers and the micro-energy producers to take a more active role in the electricity market and the dynamic energy management (DEM). The most important challenge in a smart grid (SG) is how to take advantage of the users' participation in order to reduce the cost of power. However, effective DEM depends critically on load and renewable production forecasting. This calls for intelligent methods and solutions for the real-time exploitation of the large volumes of data generated by a vast amount of smart meters. Hence, robust data analytics, high performance computing, efficient data network management, and cloud computing techniques are critical towards the optimized operation of SGs. This research aims to highlight the big data issues and challenges faced by the DEM employed in SG networks. It also provides a brief description of the most commonly used data processing methods in the literature, and proposes a promising direction for future research in the field.Comment: Published in ELSEVIER Big Data Researc

    From Digitalization to Data-Driven Decision Making in Container Terminals

    Full text link
    With the new opportunities emerging from the current wave of digitalization, terminal planning and management need to be revisited by taking a data-driven perspective. Business analytics, as a practice of extracting insights from operational data, assists in reducing uncertainties using predictions and helps to identify and understand causes of inefficiencies, disruptions, and anomalies in intra- and inter-organizational terminal operations. Despite the growing complexity of data within and around container terminals, a lack of data-driven approaches in the context of container terminals can be identified. In this chapter, the concept of business analytics for supporting terminal planning and management is introduced. The chapter specifically focuses on data mining approaches and provides a comprehensive overview on applications in container terminals and related research. As such, we aim to establish a data-driven perspective on terminal planning and management, complementing the traditional optimization perspective.Comment: 20 pages, 5 figures, book chapte

    Deep Learning on Traffic Prediction: Methods, Analysis and Future Directions

    Full text link
    Traffic prediction plays an essential role in intelligent transportation system. Accurate traffic prediction can assist route planing, guide vehicle dispatching, and mitigate traffic congestion. This problem is challenging due to the complicated and dynamic spatio-temporal dependencies between different regions in the road network. Recently, a significant amount of research efforts have been devoted to this area, especially deep learning method, greatly advancing traffic prediction abilities. The purpose of this paper is to provide a comprehensive survey on deep learning-based approaches in traffic prediction from multiple perspectives. Specifically, we first summarize the existing traffic prediction methods, and give a taxonomy. Second, we list the state-of-the-art approaches in different traffic prediction applications. Third, we comprehensively collect and organize widely used public datasets in the existing literature to facilitate other researchers. Furthermore, we give an evaluation and analysis by conducting extensive experiments to compare the performance of different methods on a real-world public dataset. Finally, we discuss open challenges in this field.Comment: to be published in IEEE Transactions on Intelligent Transportation System

    Reliability and Sharpness in Border Crossing Traffic Interval Prediction

    Full text link
    Short-term traffic volume prediction models have been extensively studied in the past few decades. However, most of the previous studies only focus on single-value prediction. Considering the uncertain and chaotic nature of the transportation system, an accurate and reliable prediction interval with upper and lower bounds may be better than a single point value for transportation management. In this paper, we introduce a neural network model called Extreme Learning Machine (ELM) for interval prediction of short-term traffic volume and improve it with the heuristic particle swarm optimization algorithm (PSO). The hybrid PSO-ELM model can generate the prediction intervals under different confidence levels and guarantee the quality by minimizing a multi-objective function which considers two criteria reliability and interval sharpness. The PSO-ELM models are built based on an hourly traffic dataset and compared with ARMA and Kalman Filter models. The results show that ARMA models are the worst for all confidence levels, and the PSO-ELM models are comparable with Kalman Filter from the aspects of reliability and narrowness of the intervals, although the parameters of PSO-ELM are fixed once the training is done while Kalman Filter is updated in an online approach. Additionally, only the PSO-ELMs are able to produce intervals with coverage probabilities higher than or equal to the confidence levels. For the points outside of the prediction levels given by PSO-ELMs, they lie very close to the bounds.Comment: Presented at 2017 TRB Annual Meetin

    Using Social Media to Predict the Future: A Systematic Literature Review

    Full text link
    Social media (SM) data provides a vast record of humanity's everyday thoughts, feelings, and actions at a resolution previously unimaginable. Because user behavior on SM is a reflection of events in the real world, researchers have realized they can use SM in order to forecast, making predictions about the future. The advantage of SM data is its relative ease of acquisition, large quantity, and ability to capture socially relevant information, which may be difficult to gather from other data sources. Promising results exist across a wide variety of domains, but one will find little consensus regarding best practices in either methodology or evaluation. In this systematic review, we examine relevant literature over the past decade, tabulate mixed results across a number of scientific disciplines, and identify common pitfalls and best practices. We find that SM forecasting is limited by data biases, noisy data, lack of generalizable results, a lack of domain-specific theory, and underlying complexity in many prediction tasks. But despite these shortcomings, recurring findings and promising results continue to galvanize researchers and demand continued investigation. Based on the existing literature, we identify research practices which lead to success, citing specific examples in each case and making recommendations for best practices. These recommendations will help researchers take advantage of the exciting possibilities offered by SM platforms

    PowerNet: Neural Power Demand Forecasting in Smart Grid

    Full text link
    Power demand forecasting is a critical task for achieving efficiency and reliability in power grid operation. Accurate forecasting allows grid operators to better maintain the balance of supply and demand as well as to optimize operational cost for generation and transmission. This article proposes a novel neural network architecture PowerNet, which can incorporate multiple heterogeneous features, such as historical energy consumption data, weather data, and calendar information, for the power demand forecasting task. Compared to two recent works based on Gradient Boosting Tree (GBT) and Support Vector Regression (SVR), PowerNet demonstrates a decrease of 33.3% and 14.3% in forecasting error, respectively. We further provide empirical results the two operational considerations that are crucial when using PowerNet in practice, i.e., how far in the future the model can forecast with a decent accuracy and how often we should re-train the forecasting model to retain its modeling capability. Finally, we briefly discuss a multilayer anomaly detection approach based on PowerNet

    A Data Mining Approach Combining K-Means Clustering with Bagging Neural Network for Short-term Wind Power Forecasting

    Full text link
    Wind power forecasting (WPF) is significant to guide the dispatching of grid and the production planning of wind farm effectively. The intermittency and volatility of wind leading to the diversity of the training samples have a major impact on the forecasting accuracy. In this paper, to deal with the training samples dynamics and improve the forecasting accuracy, a data mining approach consisting of K-means clustering and bagging neural network is proposed for short-term WPF. Based on the similarity among historical days, K-means clustering is used to classify the samples into several categories, which contain the information of meteorological conditions and historical power data. In order to overcome the over fitting and instability problems of conventional networks, a bagging-based ensemble approach is integrated into the back propagation neural network. To confirm the effectiveness, the proposed data mining approach is examined on real wind generation data traces. The simulation results show that it can obtain better forecasting accuracy than other baseline and existed short-term WPF approaches
    corecore