288 research outputs found

    A PSO Application in Skull Prosthesis Modelling by Superellipse

    Get PDF
    This paper presents a method to create the geometric model of skull defects to be applied in anatomic prosthesis modelling. The approach is to generate an image that represents the missing information in the skull when bone's defect is non-symmetric. We are proposing the use of superellipse concept to recover the parameters that represents the geometric shape of a skull bone curvature in tomography. If the superellipse is properly adjusted in each computed tomography slice, the arcs that represent the piece of missing bone can be modelled in 3D. The problem is that many similar ellipses can be created, and the best solution must be found. This research applies the Particle Swarm Optimization (PSO) algorithm in order to find the best solution for each tomographic slice. Once the solution found for each slice, the whole 3D missing information can be virtually rebuilt as an adjusted prosthesis model image

    A PSO Application in Skull Prosthesis Modelling by Superellipse

    Get PDF
    This paper presents a method to create the geometric model of skull defects to be applied in anatomic prosthesis modelling. The approach is to generate an image that represents the missing information in the skull when bone`s defect is non-symmetric. We are proposing the use of superellipse concept to recover the parameters that represents the geometric shape of a skull bone curvature in tomography. If the superellipse is properly adjusted in each computed tomography slice, the arcs that represent the piece of missing bone can be modelled in 3D. The problem is that many similar ellipses can be created, and the best solution must be found. This research applies the Particle Swarm Optimization (PSO) algorithm in order to find the best solution for each tomographic slice. Once the solution found for each slice, the whole 3D missing information can be virtually rebuilt as an adjusted prosthesis model image

    Additive Manufacturing of Medical Models - Applications in Rhinology

    Get PDF
    In the paper we are introducing guidelines and suggestions for use of 3D image processing SW in head pathology diagnostic and procedures for obtaining physical medical model by additive manufacturing/rapid prototyping techniques, bearing in mind the improvement of surgery performance, its maximum security and faster postoperative recovery of patients. This approach has been verified in two case reports. In the treatment we used intelligent classifier-schemes for abnormal patterns using computer-based system for 3D-virtual and endoscopic assistance in rhinology, with appropriate visualization of anatomy and pathology within the nose, paranasal sinuses, and scull base area

    Development of reversible intelligent prosthesis for the conservation of sculptures. A case study

    Full text link
    [EN] The application of preventive conservation measures after restoration processes is a sustainable method to control and mitigate possible deterioration and damage to Cultural Heritage. Preservation requires monitoring physical parameters that influence the monument. This document presents the development of a versatile hybrid system based on a 3D printed prosthesis implanted with sensors to collect relevant environmental data. This novel system has been applied to a work of relevance, the Stone Sepulcher of Queen Mary of Castile, located in the Royal Monastery of the Holy Trinity of Valencia (Spain). The development of such an intelligent prosthesis aims to improve the conservation of a work of art. The system presented here is completely reversible, leaving any trace on the sculpture where it was inserted after removal. This intelligent prosthesis can monitor the environmental conditions and send them to a remote server in the cloud. The results have demonstrated the viability and suitability of the procedure and present an innovative solution applicable to other pieces of Cultural Heritage.Niquet, N.; Sánchez López, M.; Mas-Barberà, X. (2020). Development of reversible intelligent prosthesis for the conservation of sculptures. A case study. Journal of Cultural Heritage. 43:227-234. https://doi.org/10.1016/j.culher.2019.12.0102272344

    From bench to bedside - current clinical and translational challenges in fibula free flap reconstruction.

    Get PDF
    Fibula free flaps (FFF) represent a working horse for different reconstructive scenarios in facial surgery. While FFF were initially established for mandible reconstruction, advancements in planning for microsurgical techniques have paved the way toward a broader spectrum of indications, including maxillary defects. Essential factors to improve patient outcomes following FFF include minimal donor site morbidity, adequate bone length, and dual blood supply. Yet, persisting clinical and translational challenges hamper the effectiveness of FFF. In the preoperative phase, virtual surgical planning and artificial intelligence tools carry untapped potential, while the intraoperative role of individualized surgical templates and bioprinted prostheses remains to be summarized. Further, the integration of novel flap monitoring technologies into postoperative patient management has been subject to translational and clinical research efforts. Overall, there is a paucity of studies condensing the body of knowledge on emerging technologies and techniques in FFF surgery. Herein, we aim to review current challenges and solution possibilities in FFF. This line of research may serve as a pocket guide on cutting-edge developments and facilitate future targeted research in FFF

    A graphic/photographic arthroscopy simulator

    Get PDF
    Thesis (M.S.V.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1988.Includes bibliographical references (leaves 44-46).by Pascal Roger Chesnais.M.S.V.S

    Additive Manufacturing of Medical Models - Applications in Rhinology

    Get PDF
    In the paper we are introducing guidelines and suggestions for use of 3D image processing SW in head pathology diagnostic and procedures for obtaining physical medical model by additive manufacturing/rapid prototyping techniques, bearing in mind the improvement of surgery performance, its maximum security and faster postoperative recovery of patients. This approach has been verified in two case reports. In the treatment we used intelligent classifier-schemes for abnormal patterns using computer-based system for 3D-virtual and endoscopic assistance in rhinology, with appropriate visualization of anatomy and pathology within the nose, paranasal sinuses, and scull base area

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems
    corecore