6,072 research outputs found

    Enriching ontological user profiles with tagging history for multi-domain recommendations

    Get PDF
    Many advanced recommendation frameworks employ ontologies of various complexities to model individuals and items, providing a mechanism for the expression of user interests and the representation of item attributes. As a result, complex matching techniques can be applied to support individuals in the discovery of items according to explicit and implicit user preferences. Recently, the rapid adoption of Web2.0, and the proliferation of social networking sites, has resulted in more and more users providing an increasing amount of information about themselves that could be exploited for recommendation purposes. However, the unification of personal information with ontologies using the contemporary knowledge representation methods often associated with Web2.0 applications, such as community tagging, is a non-trivial task. In this paper, we propose a method for the unification of tags with ontologies by grounding tags to a shared representation in the form of Wordnet and Wikipedia. We incorporate individuals' tagging history into their ontological profiles by matching tags with ontology concepts. This approach is preliminary evaluated by extending an existing news recommendation system with user tagging histories harvested from popular social networking sites

    A probabilistic model to resolve diversity-accuracy challenge of recommendation systems

    Full text link
    Recommendation systems have wide-spread applications in both academia and industry. Traditionally, performance of recommendation systems has been measured by their precision. By introducing novelty and diversity as key qualities in recommender systems, recently increasing attention has been focused on this topic. Precision and novelty of recommendation are not in the same direction, and practical systems should make a trade-off between these two quantities. Thus, it is an important feature of a recommender system to make it possible to adjust diversity and accuracy of the recommendations by tuning the model. In this paper, we introduce a probabilistic structure to resolve the diversity-accuracy dilemma in recommender systems. We propose a hybrid model with adjustable level of diversity and precision such that one can perform this by tuning a single parameter. The proposed recommendation model consists of two models: one for maximization of the accuracy and the other one for specification of the recommendation list to tastes of users. Our experiments on two real datasets show the functionality of the model in resolving accuracy-diversity dilemma and outperformance of the model over other classic models. The proposed method could be extensively applied to real commercial systems due to its low computational complexity and significant performance.Comment: 19 pages, 5 figure

    Discovering the Impact of Knowledge in Recommender Systems: A Comparative Study

    Get PDF
    Recommender systems engage user profiles and appropriate filtering techniques to assist users in finding more relevant information over the large volume of information. User profiles play an important role in the success of recommendation process since they model and represent the actual user needs. However, a comprehensive literature review of recommender systems has demonstrated no concrete study on the role and impact of knowledge in user profiling and filtering approache. In this paper, we review the most prominent recommender systems in the literature and examine the impression of knowledge extracted from different sources. We then come up with this finding that semantic information from the user context has substantial impact on the performance of knowledge based recommender systems. Finally, some new clues for improvement the knowledge-based profiles have been proposed.Comment: 14 pages, 3 tables; International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 201

    A Process Framework for Semantics-aware Tourism Information Systems

    Get PDF
    The growing sophistication of user requirements in tourism due to the advent of new technologies such as the Semantic Web and mobile computing has imposed new possibilities for improved intelligence in Tourism Information Systems (TIS). Traditional software engineering and web engineering approaches cannot suffice, hence the need to find new product development approaches that would sufficiently enable the next generation of TIS. The next generation of TIS are expected among other things to: enable semantics-based information processing, exhibit natural language capabilities, facilitate inter-organization exchange of information in a seamless way, and evolve proactively in tandem with dynamic user requirements. In this paper, a product development approach called Product Line for Ontology-based Semantics-Aware Tourism Information Systems (PLOSATIS) which is a novel hybridization of software product line engineering, and Semantic Web engineering concepts is proposed. PLOSATIS is presented as potentially effective, predictable and amenable to software process improvement initiatives

    Ontology-Based Recommendation of Editorial Products

    Get PDF
    Major academic publishers need to be able to analyse their vast catalogue of products and select the best items to be marketed in scientific venues. This is a complex exercise that requires characterising with a high precision the topics of thousands of books and matching them with the interests of the relevant communities. In Springer Nature, this task has been traditionally handled manually by publishing editors. However, the rapid growth in the number of scientific publications and the dynamic nature of the Computer Science landscape has made this solution increasingly inefficient. We have addressed this issue by creating Smart Book Recommender (SBR), an ontology-based recommender system developed by The Open University (OU) in collaboration with Springer Nature, which supports their Computer Science editorial team in selecting the products to market at specific venues. SBR recommends books, journals, and conference proceedings relevant to a conference by taking advantage of a semantically enhanced representation of about 27K editorial products. This is based on the Computer Science Ontology, a very large-scale, automatically generated taxonomy of research areas. SBR also allows users to investigate why a certain publication was suggested by the system. It does so by means of an interactive graph view that displays the topic taxonomy of the recommended editorial product and compares it with the topic-centric characterization of the input conference. An evaluation carried out with seven Springer Nature editors and seven OU researchers has confirmed the effectiveness of the solution

    Analyzing recommender systems for health promotion using a multidisciplinary taxonomy: A scoping review

    Get PDF
    Background: Recommender systems are information retrieval systems that provide users with relevant items (e.g., through messages). Despite their extensive use in the e-commerce and leisure domains, their application in healthcare is still in its infancy. These systems may be used to create tailored health interventions, thus reducing the cost of healthcare and fostering a healthier lifestyle in the population. Objective: This paper identifies, categorizes, and analyzes the existing knowledge in terms of the literature published over the past 10 years on the use of health recommender systems for patient interventions. The aim of this study is to understand the scientific evidence generated about health recommender systems, to identify any gaps in this field to achieve the United Nations Sustainable Development Goal 3 (SDG3) (namely, “Ensure healthy lives and promote well-being for all at all ages”), and to suggest possible reasons for these gaps as well as to propose some solutions. Methods: We conducted a scoping review, which consisted of a keyword search of the literature related to health recommender systems for patients in the following databases: ScienceDirect, PsycInfo, Association for Computing Machinery, IEEExplore, and Pubmed. Further, we limited our search to consider only English-lan-guage journal articles published in the last 10 years. The reviewing process comprised three researchers who filtered the results simultaneously. The quantitative synthesis was conducted in parallel by two researchers, who classified each paper in terms of four aspects—the domain, the methodological and procedural aspects, the health promotion theoretical factors and behavior change theories, and the technical aspects—using a new multidisciplinary taxonomy. Results: Nineteen papers met the inclusion criteria and were included in the data analysis, for which thirty-three features were assessed. The nine features associated with the health promotion theoretical factors and behavior change theories were not observed in any of the selected studies, did not use principles of tailoring, and did not assess (cost)-effectiveness. Discussion: Health recommender systems may be further improved by using relevant behavior change strategies and by implementing essential characteristics of tailored interventions. In addition, many of the features required to assess each of the domain aspects, the methodological and procedural aspects, and technical aspects were not reported in the studies. Conclusions: The studies analyzed presented few evidence in support of the positive effects of using health recommender systems in terms of cost-effectiveness and patient health outcomes. This is why future studies should ensure that all the proposed features are covered in our multidisciplinary taxonomy, including integration with electronic health records and the incorporation of health promotion theoretical factors and behavior change theories. This will render those studies more useful for policymakers since they will cover all aspects needed to determine their impact toward meeting SDG3.European Union's Horizon 2020 No 68112
    • …
    corecore