37,130 research outputs found

    Chemoreceptor Evolution in Hymenoptera and Its Implications for the Evolution of Eusociality.

    Get PDF
    Eusocial insects, mostly Hymenoptera, have evolved unique colonial lifestyles that rely on the perception of social context mainly through pheromones, and chemoreceptors are hypothesized to have played important adaptive roles in the evolution of sociality. However, because chemoreceptor repertoires have been characterized in few social insects and their solitary relatives, a comprehensive examination of this hypothesis has not been possible. Here, we annotate ∼3,000 odorant and gustatory receptors in recently sequenced Hymenoptera genomes and systematically compare >4,000 chemoreceptors from 13 hymenopterans, representing one solitary lineage (wasps) and three independently evolved eusocial lineages (ants and two bees). We observe a strong general tendency for chemoreceptors to expand in Hymenoptera, whereas the specifics of gene gains/losses are highly diverse between lineages. We also find more frequent positive selection on chemoreceptors in a facultative eusocial bee and in the common ancestor of ants compared with solitary wasps. Our results suggest that the frequent expansions of chemoreceptors have facilitated the transition to eusociality. Divergent expression patterns of odorant receptors between honeybee and ants further indicate differential roles of chemoreceptors in parallel trajectories of social evolution

    Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera

    Full text link
    Gaining a genomic perspective on phylogeny requires the collection of data from many putatively independent loci collected across the genome. Among insects, an increasingly common approach to collecting this class of data involves transcriptome sequencing, because few insects have high-quality genome sequences available; assembling new genomes remains a limiting factor; the transcribed portion of the genome is a reasonable, reduced subset of the genome to target; and the data collected from transcribed portions of the genome are similar in composition to the types of data with which biologists have traditionally worked (e.g., exons). However, molecular techniques requiring RNA as a template are limited to using very high quality source materials, which are often unavailable from a large proportion of biologically important insect samples. Recent research suggests that DNA-based target enrichment of conserved genomic elements offers another path to collecting phylogenomic data across insect taxa, provided that conserved elements are present in and can be collected from insect genomes. Here, we identify a large set (n==1510) of ultraconserved elements (UCE) shared among the insect order Hymenoptera. We use in silico analyses to show that these loci accurately reconstruct relationships among genome-enabled Hymenoptera, and we design a set of baits for enriching these loci that researchers can use with DNA templates extracted from a variety of sources. We use our UCE bait set to enrich an average of 721 UCE loci from 30 hymenopteran taxa, and we use these UCE loci to reconstruct phylogenetic relationships spanning very old (\geq220 MYA) to very young (\leq1 MYA) divergences among hymenopteran lineages. In contrast to a recent study addressing hymenopteran phylogeny using transcriptome data, we found ants to be sister to all remaining aculeate lineages with complete support

    Context dependent substitution biases vary within the human genome

    Get PDF
    Background: Models of sequence evolution typically assume that different nucleotide positions evolve independently. This assumption is widely appreciated to be an over-simplification. The best known violations involve biases due to adjacent nucleotides. There have also been suggestions that biases exist at larger scales, however this possibility has not been systematically explored. Results: To address this we have developed a method which identifies over- and under-represented substitution patterns and assesses their overall impact on the evolution of genome composition. Our method is designed to account for biases at smaller pattern sizes, removing their effects. We used this method to investigate context bias in the human lineage after the divergence from chimpanzee. We examined bias effects in substitution patterns between 2 and 5 bp long and found significant effects at all sizes. This included some individual three and four base pair patterns with relatively large biases. We also found that bias effects vary across the genome, differing between transposons and non-transposons, between different classes of transposons, and also near and far from genes. Conclusions: We found that nucleotides beyond the immediately adjacent one are responsible for substantial context effects, and that these biases vary across the genome

    Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs

    Get PDF
    Abstract The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers

    The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata

    Get PDF
    Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata. This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors
    corecore