18,789 research outputs found

    Comparative analysis of knowledge representation and reasoning requirements across a range of life sciences textbooks.

    Get PDF
    BackgroundUsing knowledge representation for biomedical projects is now commonplace. In previous work, we represented the knowledge found in a college-level biology textbook in a fashion useful for answering questions. We showed that embedding the knowledge representation and question-answering abilities in an electronic textbook helped to engage student interest and improve learning. A natural question that arises from this success, and this paper's primary focus, is whether a similar approach is applicable across a range of life science textbooks. To answer that question, we considered four different textbooks, ranging from a below-introductory college biology text to an advanced, graduate-level neuroscience textbook. For these textbooks, we investigated the following questions: (1) To what extent is knowledge shared between the different textbooks? (2) To what extent can the same upper ontology be used to represent the knowledge found in different textbooks? (3) To what extent can the questions of interest for a range of textbooks be answered by using the same reasoning mechanisms?ResultsOur existing modeling and reasoning methods apply especially well both to a textbook that is comparable in level to the text studied in our previous work (i.e., an introductory-level text) and to a textbook at a lower level, suggesting potential for a high degree of portability. Even for the overlapping knowledge found across the textbooks, the level of detail covered in each textbook was different, which requires that the representations must be customized for each textbook. We also found that for advanced textbooks, representing models and scientific reasoning processes was particularly important.ConclusionsWith some additional work, our representation methodology would be applicable to a range of textbooks. The requirements for knowledge representation are common across textbooks, suggesting that a shared semantic infrastructure for the life sciences is feasible. Because our representation overlaps heavily with those already being used for biomedical ontologies, this work suggests a natural pathway to include such representations as part of the life sciences curriculum at different grade levels

    An ontology for clinical questions about the contents of patient notes

    Get PDF
    AbstractObjectiveMany studies have been completed on question classification in the open domain, however only limited work focuses on the medical domain. As well, to the best of our knowledge, most of these medical question classifications were designed for literature based question and answering systems. This paper focuses on a new direction, which is to design a novel question processing and classification model for answering clinical questions applied to electronic patient notes.MethodsThere are four main steps in the work. Firstly, a relatively large set of clinical questions was collected from staff in an Intensive Care Unit. Then, a clinical question taxonomy was designed for question and answering purposes. Subsequently an annotation guideline was created and used to annotate the question set. Finally, a multilayer classification model was built to classify the clinical questions.ResultsThrough the initial classification experiments, we realized that the general features cannot contribute to high performance of a minimum classifier (a small data set with multiple classes). Thus, an automatic knowledge discovery and knowledge reuse process was designed to boost the performance by extracting and expanding the specific features of the questions. In the evaluation, the results show around 90% accuracy can be achieved in the answerable subclass classification and generic question templates classification. On the other hand, the machine learning method does not perform well at identifying the category of unanswerable questions, due to the asymmetric distribution.ConclusionsIn this paper, a comprehensive study on clinical questions has been completed. A major outcome of this work is the multilayer classification model. It serves as a major component of a patient records based clinical question and answering system as our studies continue. As well, the question collections can be reused by the research community to improve the efficiency of their own question and answering systems

    Adaptation of LIMSI's QALC for QA4MRE.

    Get PDF
    International audienceIn this paper, we present LIMSI participation to one of the pilot tasks of QA4MRE at CLEF 2012: Machine Reading of Biomedical Texts about Alzheimer. For this exercise, we adapted an existing question answering (QA) system, QALC, by searching answers in the reading document. This basic version was used for the evaluation and obtains 0.2, which was increased to 0.325 after basic corrections. We developed then different methods for choosing an answer, based on the expected answer type and the question plus answer rewritten to form hypothesis compared with candidates sentences. We also conducted studies on relation extraction by using an existing system. The last version of our system obtains 0.375

    Comparing Attributional and Relational Similarity as a Means to Identify Clinically Relevant Drug-gene Relationships

    Get PDF
    In emerging domains, such as precision oncology, knowledge extracted from explicit assertions may be insufficient to identify relationships of interest. One solution to this problem involves drawing inference on the basis of similarity. Computational methods have been developed to estimate the semantic similarity and relatedness between terms and relationships that are distributed across corpora of literature such as Medline abstracts and other forms of human readable text. Most research on distributional similarity has focused on the notion of attributional similarity, which estimates the similarity between entities based on the contexts in which they occur across a large corpus. A relatively under-researched area concerns relational similarity, in which the similarity between pairs of entities is estimated from the contexts in which these entity pairs occur together. While it seems intuitive that models capturing the structure of the relationships between entities might mediate the identification of biologically important relationships, there is to date no comparison of the relative utility of attributional and relational models for this purpose. In this research, I compare the performance of a range of relational and attributional similarity methods, on the task of identifying drugs that may be therapeutically useful in the context of particular aberrant genes, as identified by a team of human experts. My hypothesis is that relational similarity will be of greater utility than attributional similarity as a means to identify biological relationships that may provide answers to clinical questions, (such as “which drugs INHIBIT gene x”?) in the context of rapidly evolving domains. My results show that models based on relational similarity outperformed models based on attributional similarity on this task. As the methods explained in this research can be applied to identify any sort of relationship for which cue pairs exist, my results suggest that relational similarity may be a suitable approach to apply to other biomedical problems. Furthermore, I found models based on neural word embeddings (NWE) to be particularly useful for this task, given their higher performance than Random Indexing-based models, and significantly less computational effort needed to create them. NWE methods (such as those produced by the popular word2vec tool) are a relatively recent development in the domain of distributional semantics, and are considered by many as the state-of-the-art when it comes to semantic language modeling. However, their application in identifying biologically important relationships from Medline in general, and specifically, in the domain of precision oncology has not been well studied. The results of this research can guide the design and implementation of biomedical question answering and other relationship extraction applications for precision medicine, precision oncology and other similar domains, where there is rapid emergence of novel knowledge. The methods developed and evaluated in this project can help NLP applications provide more accurate results by leveraging corpus based methods that are by design scalable and robust
    corecore