10,587 research outputs found

    Anonymous reputation based reservations in e-commerce (AMNESIC)

    Get PDF
    Online reservation systems have grown over the last recent years to facilitate the purchase of goods and services. Generally, reservation systems require that customers provide some personal data to make a reservation effective. With this data, service providers can check the consumer history and decide if the user is trustable enough to get the reserve. Although the reputation of a user is a good metric to implement the access control of the system, providing personal and sensitive data to the system presents high privacy risks, since the interests of a user are totally known and tracked by an external entity. In this paper we design an anonymous reservation protocol that uses reputations to profile the users and control their access to the offered services, but at the same time it preserves their privacy not only from the seller but the service provider

    Electronic payment systems

    Full text link

    Migration control for mobile agents based on passport and visa

    Get PDF
    Research on mobile agents has attracted much attention as this paradigm has demonstrated great potential for the next-generation e-commerce. Proper solutions to security-related problems become key factors in the successful deployment of mobile agents in e-commerce systems. We propose the use of passport and visa (P/V) for securing mobile agent migration across communities based on the SAFER e-commerce framework. P/V not only serves as up-to-date digital credentials for agent-host authentication, but also provides effective security mechanisms for online communities to control mobile agent migration. Protection for mobile agents, network hosts, and online communities is enhanced using P/V. We discuss the design issues in details and evaluate the implementation of the proposed system

    Design of secure mobile payment protocols for restricted connectivity scenarios

    Get PDF
    The emergence of mobile and wireless networks made posible the extensión of electronic commerce to a new area of research: mobile commerce called m-commerce, which includes mobile payment), that refers to any e-commerce transaction made from a mobile device using wireless networks. Most of the mobile payment systems found in the literatura are based on the full connectivity scenario where all the entities are directly connected one to another but do not support business models with direct communication restrictions between the entities of the system is not a impediment to perform comercial transactions. It is for this reason that mobile payment systems that consider those situations where direct communications between entities of the system is not posible (temporarily or permanently) basically due to the impossibility of one of the entities connected to the Internet are required. In order to solve the current shortage in the scientific world of previous research works that address the problema of on-line payment from mobile devices in connectivity restricted scenarios, in this thesis we propose a set of secure payment protocols (that use both symmetric and non-traditional asymmetric cryptography), which have low computational power requirements, are fit for scenarios with communications restrictions (where at least two of the entities of the system cannot exchange information in a direct way and must do it through another entity) and offer the same security capabilities as those protocols designed for full connectivity scenarios. The proposed protocols are applicable to other types of networks, such as vehicular ad hoc network (VANETs), where services exist which require on-line payment and scenarios with communication restrictions.On the other hand, the implementation (in a multiplatform programming language) of the designed protocols shows that their performance is suitable for devices with limited computational power.Postprint (published version
    corecore