2,229 research outputs found

    Surface profile and acoustic emission as diagnostics of tool wear in face milling

    Get PDF
    This thesis examines the relationship between progressive wear of cutting inserts during a face milling operation and the acoustic emission and surface profile generated by that process. Milling experiments were performed on a range of workpiece materials using both eight point and single point inseý arrangements contained in two cutters of different geometries. Surface profile measurements were made using a stylus profilometer at intervals during the experiments. Correlations between the wear state as measured by the length of the flank wear land (Vb) and the spatial frequency content of the surface profiles were established. Investigations into the variation of fractal dimension of a milled surface with Vb demonstrated that no correlation was observable between these quantities. Acoustic emission (AE) measurements were made using a non-contacting fibre-optic interferometer which allowed the rms of the AE signal and its mean frequency to be determined. Correlations between these parameters and Vb were established for a range of workpiece materials and cutter geometries. It was shown that neither AE measurements nor surface profile measurements in isolation could predict tool wear state in all situations. The advantages of fusing data from surface profile and AE sources via an artificial neural network in tool wear monitoring were demonstrate

    SymbolDesign: A User-centered Method to Design Pen-based Interfaces and Extend the Functionality of Pointer Input Devices

    Full text link
    A method called "SymbolDesign" is proposed that can be used to design user-centered interfaces for pen-based input devices. It can also extend the functionality of pointer input devices such as the traditional computer mouse or the Camera Mouse, a camera-based computer interface. Users can create their own interfaces by choosing single-stroke movement patterns that are convenient to draw with the selected input device and by mapping them to a desired set of commands. A pattern could be the trace of a moving finger detected with the Camera Mouse or a symbol drawn with an optical pen. The core of the SymbolDesign system is a dynamically created classifier, in the current implementation an artificial neural network. The architecture of the neural network automatically adjusts according to the complexity of the classification task. In experiments, subjects used the SymbolDesign method to design and test the interfaces they created, for example, to browse the web. The experiments demonstrated good recognition accuracy and responsiveness of the user interfaces. The method provided an easily-designed and easily-used computer input mechanism for people without physical limitations, and, with some modifications, has the potential to become a computer access tool for people with severe paralysis.National Science Foundation (IIS-0093367, IIS-0308213, IIS-0329009, EIA-0202067

    Cutting tool condition monitoring using multiple sensors and artificialintelligence techniques on a computer numerical controlled milling machine

    Get PDF
    This work documents an investigation of the degradation of a variety of different tools whilst conducting milling operations on a computer numerical controlled (CNC) milling machine. The potential of a range of sensors to detect tool degradation has been investigated and the outputs have been incorporated into a monitoring system. Progressive degradation under nominal rough and finish face milling and rough groove milling has been investigated using a two point grooving tool and four and eight point face milling tools on En8, En24 and En24T workpiece materials. Rapid degradation of the cutting tool has also been observed under rough milling conditions using four and eight point face milling tools, whilst machining n8 and En24T materials in a variety of simulated and actual tool breakage situations. A limited investigation of the effect of the individual wear geometries associated with both progressive and instantaneous tool degradation has been conducted by simulating these geometries and carrying out rough miffing tests using a four point face milling tool on a workpiece of En8 material. Similarly, a limited investigation of the effect of machining on different machines has also been undertaken. A number of different sensing technologies have been used, including conventional sensors such as spindle current and cutting force but also novel sensing techniques such as Acoustic Emission. These have been combined using artificial intelligence techniques to provide automatic recognition of the tool wear state. Similarly, the feasibility of breakage detection/prediction has also been demonstrated.CEC - BRITE EURAM Programm

    A novel silicon membrane-based biosensing platform using distributive sensing strategy and artificial neural networks for feature analysis

    Get PDF
    A novel biosensing system based on a micromachined rectangular silicon membrane is proposed and investigated in this paper. A distributive sensing scheme is designed to monitor the dynamics of the sensing structure. An artificial neural network is used to process the measured data and to identify cell presence and density. Without specifying any particular bio-application, the investigation is mainly concentrated on the performance testing of this kind of biosensor as a general biosensing platform. The biosensing experiments on the microfabricated membranes involve seeding different cell densities onto the sensing surface of membrane, and measuring the corresponding dynamics information of each tested silicon membrane in the form of a series of frequency response functions (FRFs). All of those experiments are carried out in cell culture medium to simulate a practical working environment. The EA.hy 926 endothelial cell lines are chosen in this paper for the bio-experiments. The EA.hy 926 endothelial cell lines represent a particular class of biological particles that have irregular shapes, non-uniform density and uncertain growth behaviour, which are difficult to monitor using the traditional biosensors. The final predicted results reveal that the methodology of a neural-network based algorithm to perform the feature identification of cells from distributive sensory measurement has great potential in biosensing applications
    • …
    corecore