21,033 research outputs found

    Artimate: an articulatory animation framework for audiovisual speech synthesis

    Get PDF
    We present a modular framework for articulatory animation synthesis using speech motion capture data obtained with electromagnetic articulography (EMA). Adapting a skeletal animation approach, the articulatory motion data is applied to a three-dimensional (3D) model of the vocal tract, creating a portable resource that can be integrated in an audiovisual (AV) speech synthesis platform to provide realistic animation of the tongue and teeth for a virtual character. The framework also provides an interface to articulatory animation synthesis, as well as an example application to illustrate its use with a 3D game engine. We rely on cross-platform, open-source software and open standards to provide a lightweight, accessible, and portable workflow.Comment: Workshop on Innovation and Applications in Speech Technology (2012

    Speech-driven Animation with Meaningful Behaviors

    Full text link
    Conversational agents (CAs) play an important role in human computer interaction. Creating believable movements for CAs is challenging, since the movements have to be meaningful and natural, reflecting the coupling between gestures and speech. Studies in the past have mainly relied on rule-based or data-driven approaches. Rule-based methods focus on creating meaningful behaviors conveying the underlying message, but the gestures cannot be easily synchronized with speech. Data-driven approaches, especially speech-driven models, can capture the relationship between speech and gestures. However, they create behaviors disregarding the meaning of the message. This study proposes to bridge the gap between these two approaches overcoming their limitations. The approach builds a dynamic Bayesian network (DBN), where a discrete variable is added to constrain the behaviors on the underlying constraint. The study implements and evaluates the approach with two constraints: discourse functions and prototypical behaviors. By constraining on the discourse functions (e.g., questions), the model learns the characteristic behaviors associated with a given discourse class learning the rules from the data. By constraining on prototypical behaviors (e.g., head nods), the approach can be embedded in a rule-based system as a behavior realizer creating trajectories that are timely synchronized with speech. The study proposes a DBN structure and a training approach that (1) models the cause-effect relationship between the constraint and the gestures, (2) initializes the state configuration models increasing the range of the generated behaviors, and (3) captures the differences in the behaviors across constraints by enforcing sparse transitions between shared and exclusive states per constraint. Objective and subjective evaluations demonstrate the benefits of the proposed approach over an unconstrained model.Comment: 13 pages, 12 figures, 5 table

    3D performance capture for facial animation

    Get PDF
    This work describes how a photogrammetry based 3D capture system can be used as an input device for animation. The 3D Dynamic Capture System is used to capture the motion of a human face, which is extracted from a sequence of 3D models captured at TV frame rate. Initially the positions of a set of landmarks on the face are extracted. These landmarks are then used to provide motion data in two different ways. First, a high level description of the movements is extracted, and these can be used as input to a procedural animation package (i.e. CreaToon). Second the landmarks can be used as registration points for a conformation process where the model to be animated is modified to match the captured model. This approach gives a new sequence of models, which have the structure of the drawn model but the movement of the captured sequence

    Remote Real-Time Collaboration Platform enabled by the Capture, Digitisation and Transfer of Human-Workpiece Interactions

    Get PDF
    In this highly globalised manufacturing ecosystem, product design and verification activities, production and inspection processes, and technical support services are spread across global supply chains and customer networks. Therefore, a platform for global teams to collaborate with each other in real-time to perform complex tasks is highly desirable. This work investigates the design and development of a remote real-time collaboration platform by using human motion capture technology powered by infrared light based depth imaging sensors borrowed from the gaming industry. The unique functionality of the proposed platform is the sharing of physical contexts during a collaboration session by not only exchanging human actions but also the effects of those actions on the task environment. This enables teams to remotely work on a common task problem at the same time and also get immediate feedback from each other which is vital for collaborative design, inspection and verifications tasks in the factories of the future

    A Mimetic Strategy to Engage Voluntary Physical Activity In Interactive Entertainment

    Full text link
    We describe the design and implementation of a vision based interactive entertainment system that makes use of both involuntary and voluntary control paradigms. Unintentional input to the system from a potential viewer is used to drive attention-getting output and encourage the transition to voluntary interactive behaviour. The iMime system consists of a character animation engine based on the interaction metaphor of a mime performer that simulates non-verbal communication strategies, without spoken dialogue, to capture and hold the attention of a viewer. The system was developed in the context of a project studying care of dementia sufferers. Care for a dementia sufferer can place unreasonable demands on the time and attentional resources of their caregivers or family members. Our study contributes to the eventual development of a system aimed at providing relief to dementia caregivers, while at the same time serving as a source of pleasant interactive entertainment for viewers. The work reported here is also aimed at a more general study of the design of interactive entertainment systems involving a mixture of voluntary and involuntary control.Comment: 6 pages, 7 figures, ECAG08 worksho

    Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.

    Get PDF
    Abstract Purpose: This paper proposes a novel system (using the Nintendo Wii remote) that offers customised, non-immersive, virtual reality-based, upper-limb stroke rehabilitation and reports on promising preliminary findings with stroke survivors. Method: The system novelty lies in the high accuracy of the full kinematic tracking of the upper limb movement in real-time, offering strong personal connection between the stroke survivor and a virtual character when executing therapist prescribed adjustable exercises/games. It allows the therapist to monitor patient performance and to individually calibrate the system in terms of range of movement, speed and duration. Results: The system was tested for acceptability with three stroke survivors with differing levels of disability. Participants reported an overwhelming connection with the system and avatar. A two-week, single case study with a long-term stroke survivor showed positive changes in all four outcome measures employed, with the participant reporting better wrist control and greater functional use. Activities, which were deemed too challenging or too easy were associated with lower scores of enjoyment/motivation, highlighting the need for activities to be individually calibrated. Conclusions: Given the preliminary findings, it would be beneficial to extend the case study in terms of duration and participants and to conduct an acceptability and feasibility study with community dwelling survivors. Implications for Rehabilitation Low-cost, off-the-shelf game sensors, such as the Nintendo Wii remote, are acceptable by stroke survivors as an add-on to upper limb stroke rehabilitation but have to be bespoked to provide high-fidelity and real-time kinematic tracking of the arm movement. Providing therapists with real-time and remote monitoring of the quality of the movement and not just the amount of practice, is imperative and most critical for getting a better understanding of each patient and administering the right amount and type of exercise. The ability to translate therapeutic arm movement into individually calibrated exercises and games, allows accommodation of the wide range of movement difficulties seen after stroke and the ability to adjust these activities (in terms of speed, range of movement and duration) will aid motivation and adherence - key issues in rehabilitation. With increasing pressures on resources and the move to more community-based rehabilitation, the proposed system has the potential for promoting the intensity of practice necessary for recovery in both community and acute settings.The National Health Service (NHS) London Regional Innovation Fund

    Sketching-out virtual humans: From 2d storyboarding to immediate 3d character animation

    Get PDF
    Virtual beings are playing a remarkable role in today’s public entertainment, while ordinary users are still treated as audiences due to the lack of appropriate expertise, equipment, and computer skills. In this paper, we present a fast and intuitive storyboarding interface, which enables users to sketch-out 3D virtual humans, 2D/3D animations, and character intercommunication. We devised an intuitive “stick figurefleshing-outskin mapping” graphical animation pipeline, which realises the whole process of key framing, 3D pose reconstruction, virtual human modelling, motion path/timing control, and the final animation synthesis by almost pure 2D sketching. A “creative model-based method” is developed, which emulates a human perception process, to generate the 3D human bodies of variational sizes, shapes, and fat distributions. Meanwhile, our current system also supports the sketch-based crowd animation and the storyboarding of the 3D multiple character intercommunication. This system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes
    corecore