223 research outputs found

    Self-timed field programmmable gate array architectures

    Get PDF

    Computer design and optimisation of holographic phase elements

    Get PDF

    Visualizing three-dimensional graph drawings

    Get PDF
    viii, 110 leaves : ill. (some col.) ; 29 cm.The GLuskap system for interactive three-dimensional graph drawing applies techniques of scientific visualization and interactive systems to the construction, display, and analysis of graph drawings. Important features of the system include support for large-screen stereographic 3D display with immersive head-tracking and motion-tracked interactive 3D wand control. A distributed rendering architecture contributes to the portability of the system, with user control performed on a laptop computer without specialized graphics hardware. An interface for implementing graph drawing layout and analysis algorithms in the Python programming language is also provided. This thesis describes comprehensively the work on the system by the author—this work includes the design and implementation of the major features described above. Further directions for continued development and research in cognitive tools for graph drawing research are also suggested

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation explores three key facets of software algorithms for custom hardware ray tracing: primitive intersection, shading, and acceleration structure construction. For the first, primitive intersection, we show how nearly all of the existing direct three-dimensional (3D) ray-triangle intersection tests are mathematically equivalent. Based on this, a genetic algorithm can automatically tune a ray-triangle intersection test for maximum speed on a particular architecture. We also analyze the components of the intersection test to determine how much floating point precision is required and design a numerically robust intersection algorithm. Next, for shading, we deconstruct Perlin noise into its basic parts and show how these can be modified to produce a gradient noise algorithm that improves the visual appearance. This improved algorithm serves as the basis for a hardware noise unit. Lastly, we show how an existing bounding volume hierarchy can be postprocessed using tree rotations to further reduce the expected cost to traverse a ray through it. This postprocessing also serves as the basis for an efficient update algorithm for animated geometry. Together, these contributions should improve the efficiency of both software- and hardware-based ray tracers

    The instruction of systolic array (ISA) and simulation of parallel algorithms

    Get PDF
    Systolic arrays have proved to be well suited for Very Large Scale Integrated technology (VLSI) since they: -Consist of a regular network of simple processing cells, -Use local communication between the processing cells only, -Exploit a maximal degree of parallelism. However, systolic arrays have one main disadvantage compared with other parallel computer architectures: they are special purpose architectures only capable of executing one algorithm, e.g., a systolic array designed for sorting cannot be used to form matrix multiplication. Several approaches have been made to make systolic arrays more flexible, in order to be able to handle different problems on a single systolic array. In this thesis an alternative concept to a VLSI-architecture the Soft-Systolic Simulation System (SSSS), is introduced and developed as a working model of virtual machine with the power to simulate hard systolic arrays and more general forms of concurrency such as the SIMD and MIMD models of computation. The virtual machine includes a processing element consisting of a soft-systolic processor implemented in the virtual.machine language. The processing element considered here was a very general element which allows the choice of a wide range of arithmetic and logical operators and allows the simulation of a wide class of algorithms but in principle extra processing cells can be added making a library and this library be tailored to individual needs. The virtual machine chosen for this implementation is the Instruction Systolic Array (ISA). The ISA has a number of interesting features, firstly it has been used to simulate all SIMD algorithms and many MIMD algorithms by a simple program transformation technique, further, the ISA can also simulate the so-called wavefront processor algorithms, as well as many hard systolic algorithms. The ISA removes the need for the broadcasting of data which is a feature of SIMD algorithms (limiting the size of the machine and its cycle time) and also presents a fairly simple communication structure for MIMD algorithms. The model of systolic computation developed from the VLSI approach to systolic arrays is such that the processing surface is fixed, as are the processing elements or cells by virtue of their being embedded in the processing surface. The VLSI approach therefore freezes instructions and hardware relative to the movement of data with the virtual machine and softsystolic programming retaining the constructions of VLSI for array design features such as regularity, simplicity and local communication, allowing the movement of instructions with respect to data. Data can be frozen into the structure with instructions moving systolically. Alternatively both the data and instructions can move systolically around the virtual processors, (which are deemed fixed relative to the underlying architecture). The ISA is implemented in OCCAM programs whose execution and output implicitly confirm the correctness of the design. The soft-systolic preparation comprises of the usual operating system facilities for the creation and modification of files during the development of new programs and ISA processor elements. We allow any concurrent high level language to be used to model the softsystolic program. Consequently the Replicating Instruction Systolic Array Language (RI SAL) was devised to provide a very primitive program environment to the ISA but adequate for testing. RI SAL accepts instructions in an assembler-like form, but is fairly permissive about the format of statements, subject of course to syntax. The RI SAL compiler is adopted to transform the soft-systolic program description (RISAL) into a form suitable for the virtual machine (simulating the algorithm) to run. Finally we conclude that the principles mentioned here can form the basis for a soft-systolic simulator using an orthogonally connected mesh of processors. The wide range of algorithms which the ISA can simulate make it suitable for a virtual simulating grid
    • …
    corecore