4 research outputs found

    Modeling and simulation of adaptive multimodal optical sensors for target tracking in the visible to near infrared

    Get PDF
    This work investigates an integrated aerial remote sensor design approach to address moving target detection and tracking problems within highly cluttered, dynamic ground-based scenes. Sophisticated simulation methodologies and scene phenomenology validations have resulted in advancements in artificial multimodal truth video synthesis. Complex modeling of novel micro-opto-electro-mechanical systems (MOEMS) devices, optical systems, and detector arrays has resulted in a proof of concept for a state-of-the-art imaging spectropolarimeter sensor model that does not suffer from typical multimodal image registration problems. Test methodology developed for this work provides the ability to quantify performance of a target tracking application with varying ground scenery, flight characteristics, or sensor specifications. The culmination of this research is an end-to-end simulated demonstration of multimodal aerial remote sensing and target tracking. Deeply hidden target recognition is shown to be enhanced through the fusing of panchromatic, hyperspectral, and polarimetric image modalities. The Digital Imaging and Remote Sensing Image Generation model was leveraged to synthesize truth spectropolarimetric sensor-reaching radiance image cubes comprised of coregistered Stokes vector bands in the visible to near-infrared. An intricate synthetic urban scene containing numerous moving vehicular targets was imaged from a virtual sensor aboard an aerial platform encircling a stare point. An adaptive sensor model was designed with a superpixel array of MOEMS devices fabricated atop a division of focal plane detector. Degree of linear polarization (DoLP) imagery is acquired by combining three adjacent micropolarizer outputs within each 2x2 superpixel whose respective transmissions vary with wavelength, relative angle of polarization, and wire-grid spacing. A novel micromirror within each superpixel adaptively relays light between a panchromatic imaging channel and a hyperspectral spectrometer channel. All optical and detector sensor effects were radiometrically modeled using MATLAB and optical lens design software. Orthorectification of all sensor outputs yields multimodal pseudonadir observation video at a fixed ground sampled distance across an area of responsibility. A proprietary MATLAB-based target tracker accomplishes change detection between sequential panchromatic or DoLP observation frames, and queries the sensor for hyperspectral pixels to aid in track initialization and maintenance. Image quality, spectral quality, and tracking performance metrics are reported for varying scenario parameters including target occlusions within the scene, declination angle and jitter of the aerial platform, micropolarizer diattenuation, and spectral/spatial resolution of the adaptive sensor outputs. DoLP observations were found to track moving vehicles better than panchromatic observations at high oblique angles when facing the sensor generally toward the sun. Vehicular occlusions due to tree canopies and parallax effects of tall buildings significantly reduced tracking performance as expected. Smaller MOEMS pixel sizes drastically improved track performance, but also generated a significant number of false tracks. Atmospheric haze from urban aerosols eliminated the tracking utility of DoLP observations, while aerial platform jitter without image stabilization eliminated tracking utility in both modalities. Wire-grid micropolarizers with very low VNIR diattenuation were found to still extinguish enough cross-polarized light to successfully distinguish and track moving vehicles from their urban background. Thus, state-of-the-art lithographic techniques to create finer wire-grid spacings that exhibit high VNIR diattenuation may not be required

    An Angle of Polarization (AoP) Visualization Method for DoFP Polarization Image Sensors Based on Three Dimensional HSI Color Space

    No full text
    A demand for division of focal plane (DoFP) polarization image sensors grows rapidly as nanofabrication technologies become mature. The DoFP sensor can output real time data of polarization information. In this paper, a novel visualization method for angle of polarization (AoP) is proposed for DoFP polarization image sensors. The data characteristics of AoP are analyzed, and strategies for a visualization method are proposed which conforms to the characteristics of AoP data. According to these strategies, we propose a visualization method for AoP data based on three dimensional HSI color space. This method uses intensity and saturation to characterize the magnitude of the angle between the polarization direction and the horizontal direction wherein the hue indicates the deflection direction. It is shown by the numerical simulation that the noise in the AoP image can be suppressed by our visualization method. In addition, the real-world experiment results are consistent with the numerical simulation and verify that the AoP image obtained by our method can suppress the influence of characterization noise, and the image is simple and intuitive, which is advantageous to human vision. The proposed method can be directly used for the commercialized DoFP polarization image sensor to display real-time AoP data

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore