258 research outputs found

    Ubiquitous model for wireless sensor networks monitoring

    Get PDF
    Wireless Sensor Networks (WSNs) belongs to a new technology trend where tiny and resource constrained devices are wirelessly interconnected and are able to interact with the surrounding environment by collecting data, such as temperature and humidity. Recently, due to the huge growth of mobile devices usage with Internet connection, smartphones are becoming the center of future ubiquitous wireless networks allowing users to access data network services, anytime and anywhere. According to the Internet of Things vision, interconnecting WSNs with smartphones and the Internet is a big challenge. Then, due to the heterogeneity of these devices new architectures are required. This dissertation focuses on the design and construction of a ubiquitous architecture for WSNs monitoring based on Web services, a relational database, and an Android mobile application. This architecture allows mobile users accessing real-time or historical data in a ubiquitous environment using smartphones. Besides that, a push notification system to alert mobile users when a sensor parameter overcomes a given threshold was created. The entire solution was evaluated and demonstrated using a laboratory WSN testbed, and is ready for use.As redes de sensores sem fios fazem parte de uma nova tendência tecnológica na qual pequenos dispositivos com recursos limitados comunicam entre si, sem fios, e interagem com o ambiente envolvente recolhendo uma grande diversidade de dados, tais como a temperatura e a humidade. Recentemente, devido ao enorme crescimento no uso de dispositivos móveis com ligação à Internet, os smartphones estão a tornar-se o centro das futuras redes sem fios ubíquas permitindo aos utilizadores aceder a dados, a qualquer hora e em qualquer lugar. De acordo com a visão da Internet of Things, interligar redes de sensores sem fios e smartphones usando a Internet é um grande desafio e novas arquitecturas são necessárias devido à heterogeneidade destes dispositivos. Esta dissertação centra-se na proposta e construção de uma arquitectura ubíqua para a monitorização de redes de sensores sem fios, baseada em serviços Web, apoiada numa base de dados relacional e uma aplicação móvel para o sistema operative Android. Esta arquitectura permite que os utilizadores móveis acedam a dados em tempo real e também a dados históricos, num ambiente móvel, usando smartphones. Além disso, foi desenvolvido um sistema de notificações push que alerta o utilizador quando um dado parâmetro de um sensor ultrapassa um limiar pré-definido. A solução construída foi testada e demonstrada utilizando uma testbed laboratorial e está pronta para utilização

    Intelligent Personal Assistants Solutions in Ubiquitous Environments in the Context of Internet of Things

    Get PDF
    Internet of Things (IoT) will create the opportunity to develop new types of businesses. Every tangible object, biologic or not, will be identified by a unique address, creating a common network composed by billions of devices. Those devices will have different requirements, creating the necessity of finding new mechanisms to satisfy the needs of all the entities within the network. This is one of the main problems that all the scientific community should address in order to make Internet of Things the Future Internet. Currently, IoT is used in a lot of projects involving Wireless Sensor Networks (WSNs). Sensors are generally cheap and small devices able to generate useful information from physical indicators. They can be used on smart home scenarios, or even on healthcare environments, turning sensors into useful devices to accomplish the goals of many use case scenarios. Sensors and other devices with some reasoning capabilities, like smart objects, can be used to create smart environments. The interaction between the objects in those scenarios and humans can be eased by the inclusion of Intelligent Personal Assistants (IPAs). Currently, IPAs have good reasoning capabilities, improving the assistance they give to their owners. Artificial intelligence (AI), new learning mechanisms, and the evolution assisted in speech technology also contributed to this improvement. The integration of IPAs in IoT scenarios can become a case of great success. IPAs will comprehend the behavior of their owners not only through direct interactions, but also by the interactions they have with other objects in the environment. This may create ubiquitous communication scenarios where humans act as passive elements, being adequately informed of all the aspects of interest that surrounds them. The communication between IPAs and other objects in their surrounding environment may use gateways for traffic forwarding. On ubiquitous environments devices can be mobile or static. For example, in smart home scenarios, objects are generally static, being always on the same position. In mobile health scenarios, objects can move from one place to another. To turn IPAs useful on all types of environments, static and mobile gateways should be developed. On this dissertation, a novel mobile gateway solution for an IPA platform inserted on an IoT context is proposed. A mobile health scenario was chosen. Then, a Body Sensor Network (BSN) is always monitoring a person, giving the real time feedback of his/her health status to another person responsible by him (designated caretaker). On this scenario, a mobile gateway is needed to forward the traffic between the BSN and the IPA of the caretaker. Therefore, the IPA is able to give warnings about the health status of the person under monitoring, in real time. The proposed system is evaluated, demonstrated, and validated through a prototype, where the more important aspects for IPAs and IoT networks are considered

    System for monitoring and supporting the treatment of sleep apnea using IoT and big data

    Full text link
    [EN] Sleep apnea has become in the sleep disorder that causes greater concern in recent years due to its morbidity and mortality, higher medical care costs and poor people quality of life. Some proposals have addressed sleep apnea disease in elderly people, but they have still some technical limitations. For these reasons, this paper presents an innovative system based on fog and cloud computing technologies which in combination with IoT and big data platforms offers new opportunities to build novel and innovative services for supporting the sleep apnea and to overcome the current limitations. Particularly, the system is built on several low-power wireless networks with heterogeneous smart devices (i.e, sensors and actuators). In the fog, an edge node (Smart IoT Gateway) provides IoT connection and interoperability and pre-processing IoT data to detect events in real-time that might endanger the elderly's health and to act accordingly. In the cloud, a Generic Enabler Context Broker manages, stores and injects data into the big data analyzer for further processing and analyzing. The system's performance and subjective applicability are evaluated using over 30 GB size datasets and a questionnaire fulfilled by medicals specialist, respectively. Results show that the system data analytics improve the health professionals' decision making to monitor and guide sleep apnea treatment, as well as improving elderly people's quality of life. (C) 2018 Elsevier B.V. All rights reserved.This research was supported by the Ecuadorian Government through the Secretary of Higher Education, Science, Technology, and Innovation (SENESCYT) and has received funding from the European Union's "Horizon 2020'' research and innovation program as part of the ACTIVAGE project under Grant 732679 and the Interoperability of Heterogeneous IoT Platforms project (INTER-IoT) under Grant 687283.Yacchirema-Vargas, DC.; Sarabia-Jácome, DF.; Palau Salvador, CE.; Esteve Domingo, M. (2018). System for monitoring and supporting the treatment of sleep apnea using IoT and big data. Pervasive and Mobile Computing. 50:25-40. https://doi.org/10.1016/j.pmcj.2018.07.007S25405

    An IoT-Aware Architecture for Smart Healthcare Systems

    Get PDF
    none7Over the last few years, the convincing forward steps in the development of Internet-of-Things (IoT) enabling solutions are spurring the advent of novel and fascinating applications. Among others, mainly Radio Frequency Identification (RFID), Wireless Sensor Network (WSN), and smart mobile technologies are leading this evolutionary trend. In the wake of this tendency, this paper proposes a novel, IoTaware, smart architecture for automatic monitoring and tracking of patients, personnel, and biomedical devices within hospitals and nursing institutes. Staying true to the IoT vision, we propose a Smart Hospital System (SHS) which relies on different, yet complementary, technologies, specifically RFID, WSN, and smart mobile, interoperating with each other through a CoAP/6LoWPAN/REST network infrastructure. The SHS is able to collect, in real time, both environmental conditions and patients’ physiological parameters via an ultra-low-power Hybrid Sensing Network (HSN) composed of 6LoWPAN nodes integrating UHF RFID functionalities. Sensed data are delivered to a control center where an advanced monitoring application makes them easily accessible by both local and remote users via a REST web service. The simple proof of concept implemented to validate the proposed SHS has highlighted a number of key capabilities and aspects of novelty which represent a significant step forward compared to the actual state of art.restrictedCATARINUCCI L.; DE DONNO D.; MAINETTI L.; PALANO L.; PATRONO L.; STEFANIZZI M.; TARRICONE L.Catarinucci, Luca; DE DONNO, Danilo; Mainetti, Luca; Palano, L.; Patrono, Luigi; Stefanizzi, MARIA LAURA; Tarricone, Lucian

    An IoT-aware Architecture to improve Safety in Sports Environments

    Get PDF
    The introduction of Internet of Things enabling technologies into the sport and recreational activities domain provide an interesting research challenge. Their adoption could significantly improve the sport experience and also the safety level of team sports. Despite this, only few attempts have been done to demonstrate the benefits provided by use of IoT technologies in sport environments. To fill this gap, this paper propose an IoT-aware Sport System based on the jointly use of different innovative technologies and standards. By exploiting the potentialities offered by an ultra-low-power Hybrid Sensing Network (HSN), composed of 6LoWPAN nodes integrating UHF RFID functionalities, the system is able to collect, in real time, both environmental parameters and players’ physiological data. Sensed data are then delivered to a Cloud platform where a monitoring application makes them easily accessible via REST Web Services. A simple proof of concept has demonstrated the appropriateness of the proposed solution

    A Data-Oriented M2M Messaging Mechanism for Industrial IoT Applications

    Get PDF

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease

    Raamistik mobiilsete asjade veebile

    Get PDF
    Internet on oma arengus läbi aastate jõudnud järgmisse evolutsioonietappi - asjade internetti (ingl Internet of Things, lüh IoT). IoT ei tähista ühtainsat tehnoloogiat, see võimaldab eri seadmeil - arvutid, mobiiltelefonid, autod, kodumasinad, loomad, virtuaalsensorid, jne - omavahel üle Interneti suhelda, vajamata seejuures pidevat inimesepoolset seadistamist ja juhtimist. Mobiilseadmetest nagu näiteks nutitelefon ja tahvelarvuti on saanud meie igapäevased kaaslased ning oma mitmekülgse võimekusega on nad motiveerinud teadustegevust mobiilse IoT vallas. Nutitelefonid kätkevad endas võimekaid protsessoreid ja 3G/4G tehnoloogiatel põhinevaid internetiühendusi. Kuid kui kasutada seadmeid järjepanu täisvõimekusel, tühjeneb mobiili aku kiirelt. Doktoritöö esitleb energiasäästlikku, kergekaalulist mobiilsete veebiteenuste raamistikku anduriandmete kogumiseks, kasutades kergemaid, energiasäästlikumaid suhtlustprotokolle, mis on IoT keskkonnale sobilikumad. Doktoritöö käsitleb põhjalikult energia kokkuhoidu mobiilteenuste majutamisel. Töö käigus loodud raamistikud on kontseptsiooni tõestamiseks katsetatud mitmetes juhtumiuuringutes päris seadmetega.The Internet has evolved, over the years, from just being the Internet to become the Internet of Things (IoT), the next step in its evolution. IoT is not a single technology and it enables about everything from computers, mobile phones, cars, appliances, animals, virtual sensors, etc. that connect and interact with each other over the Internet to function free from human interaction. Mobile devices like the Smartphone and tablet PC have now become essential to everyday life and with extended capabilities have motivated research related to the mobile Internet of Things. Although, the recently developed Smartphones enjoy the high performance and high speed 3G/4G mobile Internet data transmission services, such high speed performances quickly drain the battery power of the mobile device. This thesis presents an energy efficient lightweight mobile Web service provisioning framework for mobile sensing utilizing the protocols that were designed for the constrained IoT environment. Lightweight protocols provide an energy efficient way of communication. Finally, this thesis highlights the energy conservation of the mobile Web service provisioning, the developed framework, extensively. Several case studies with the use of the proposed framework were implemented on real devices and has been thoroughly tested as a proof-of-concept.https://www.ester.ee/record=b522498
    corecore