3,436 research outputs found

    A multimedia package for patient understanding and rehabilitation of non-contact anterior cruciate ligament injuries

    Get PDF
    Non-contact anterior cruciate ligament (ACL) injury is one of the most common ligament injuries in the body. Many patients’ receive graft surgery to repair the damage, but have to undertake an extensive period of rehabilitation. However, non-compliance and lack of understanding of the injury, healing process and rehabilitation means patient’s return to activities before effective structural integrity of the graft has been reached. When clinicians educate the patient, to encourage compliance with treatment and rehabilitation, the only tools that are currently widely in use are static plastic models, line diagrams and pamphlets. As modern technology grows in use in anatomical education, we have developed a unique educational and training package for patient’s to use in gaining a better understanding of their injury and treatment plan. We have combined cadaveric dissections of the knee (and captured with high resolution digital images) with reconstructed 3D modules from the Visible Human dataset, computer generated animations, and images to produce a multimedia package, which can be used to educate the patient in their knee anatomy, the injury, the healing process and their rehabilitation, and how this links into key stages of improving graft integrity. It is hoped that this will improve patient compliance with their rehabilitation programme, and better long-term prognosis in returning to normal or near-normal activities. Feedback from healthcare professionals about this package has been positive and encouraging for its long-term use

    Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion

    Get PDF
    We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa

    A Novel Method of Anatomical Data Acquisition Using the Perceptron ScanWorks V5 Scanner

    Get PDF
    A drastic reduction in the time available for cadaveric dissection and anatomy teaching in medical and surgical education has increased the requirement to supplement learning with the use of virtual gross anatomy training tools. In light of this, a number of known studies have approached the task of sourcing anatomical data from cadaveric material for end us in creating 3D reconstructions of the human body by producing vast image libraries of anatomical cross sections. However, the processing involved in the conversion of cross sectional images to reconstructions in 3D elicits a number of problems in creating an accurate and adequately detailed end product, suitable for educational. In this paperwe have employed a unique approach in a pilot study acquire anatomical data for end-use in 3D anatomical reconstruction by using topographical 3D laser scanning and high-resolution digital photography of all clinically relevant structures from the lower limb of a male cadaveric specimen. As a result a comprehensive high-resolution dataset, comprising 3D laser scanned data and corresponding colour photography was obtained from all clinically relevant gross anatomical structures associated with the male lower limb. This unique dataset allows a very unique and novel way to capture anatomical data and saves on the laborious processing of image segmentation common to conventional image acquisition used clinically, like CT and MRI scans. From this, it provides a dataset which can then be used across a number of commercial products dependent on the end-users requirements for development of computer training packages in medical and surgical rehearsal

    A Novel Method of Anatomical Data Acquisition Using the Perceptron ScanWorks V5 Scanner

    Get PDF
    A drastic reduction in the time available for cadaveric dissection and anatomy teaching in medical and surgical education has increased the requirement to supplement learning with the use of virtual gross anatomy training tools. In light of this, a number of known studies have approached the task of sourcing anatomical data from cadaveric material for end us in creating 3D reconstructions of the human body by producing vast image libraries of anatomical cross sections. However, the processing involved in the conversion of cross sectional images to reconstructions in 3D elicits a number of problems in creating an accurate and adequately detailed end product, suitable for educational. In this paperwe have employed a unique approach in a pilot study acquire anatomical data for end-use in 3D anatomical reconstruction by using topographical 3D laser scanning and high-resolution digital photography of all clinically relevant structures from the lower limb of a male cadaveric specimen. As a result a comprehensive high-resolution dataset, comprising 3D laser scanned data and corresponding colour photography was obtained from all clinically relevant gross anatomical structures associated with the male lower limb. This unique dataset allows a very unique and novel way to capture anatomical data and saves on the laborious processing of image segmentation common to conventional image acquisition used clinically, like CT and MRI scans. From this, it provides a dataset which can then be used across a number of commercial products dependent on the end-users requirements for development of computer training packages in medical and surgical rehearsal

    A novel method of cadaveric data acquisition from a dissection of the male lower limb using the Perceptron ScanWorks® V5 scanner

    Get PDF
    Introduction: Under the current pressures of an expanding medical curriculum, the time allocated to anatomical training in medical education has been greatly reduced, resulting in an increasing number of doctors qualifying from medical school with an inadequate, and arguably unsafe level of anatomical understanding. Given the limited time now available for cadaveric dissection in medical training, future rectification of these deficits is becoming heavily dependent on supplementation from virtual anatomical training tools. In light of this, many attempts have been made to acquire cadaveric data for the creation of realistic virtual specimens. Until now however, the educational value of these training tools has been heavily scrutinised, with many sharing the view that they are over simplified and anatomically inaccurate. The main problems associated with the usability of pre-existing datasets arise primarily as a result of the methodology used to acquire their cadaveric data. Projects in this field have previously approached the task of cadaveric data acquisition by creating comprehensive libraries of anatomical cross-sections, from which three-dimensional processing can be technically difficult and not always successful for the reconstruction of fine or complex anatomical structures. Aim: The aim of this study therefore was to approach cadaveric data acquisition, for the purpose of creating a digital cadaveric specimen, in an unconventional manner, by obtaining three-dimensional data directly from cadaveric tissues with a Perceptron ScanWorksV5 non-contact laser scanner. Methods: To do this, a carefully planned dissection of the lower limb was performed on a 68 year old male cadaver, and laser scanning of all clinically relevant structures was undertaken at sequential stages throughout. In addition to this, colour and texture information was collected from the cadaveric tissues by high-resolution digital photography. Results: A comprehensive three-dimensional dataset was acquired from all clinically relevant anatomy of the lower limb as a result of the methodology used in this study. Data was obtained at extremely high point to point resolutions, with a measurement accuracy of 24μm, 2σ. Discussion: By obtaining cadaveric data in this way, the problems associated with the three-dimensional processing of conventional cross-sectional data, such as image segmentation, are largely overcome and fine anatomical details can be accurately documented with high precision. This data can be processed further to create an accurate and realistic virtual reconstruction of the lower limb for both three-dimensional anatomical training and surgical rehearsal in the future. Conclusion: Whilst the value of cross-sectional datasets in their own right should not be disputed, the methodology used for cadaveric data acquisition in this study has proved a very successful in collecting three-dimensional data directly form the specimen, and could be used to acquire detailed datasets for the reconstruction of other complex body regions for virtual anatomical training in the future

    3D printing and high tibial osteotomy

    Get PDF
    High tibial osteotomy (HTO) is a relatively conservative surgical option in the management of medial knee pain. Thus far, the outcomes have been variable, and apparently worse than the arthroplasty alternatives when judged using conventional metrics, owing in large part to uncer - tainty around the extent of the correction planned and achieved. This review paper introduces the concept of detailed 3D planning of the procedure, and describes the 3D printing technology that enables the plan to be performed. The different ways that the osteotomy can be undertaken, and the varying guide designs that enable accurate regis - tration are discussed and described. The system accuracy is reported. In keeping with other assistive technologies, 3D printing enables the surgeon to achieve a preoperative plan with a degree of accuracy that is not possible using conventional instruments. With the advent of low dose CT, it has been possible to confirm that the procedure has been under - taken accurately too. HTO is the ‘ultimate’ personal intervention: the amount of correction needed for optimal offloading is not yet com - pletely understood. For the athletic person with early medial joint line over - load who still runs and enjoys life, HTO using 3D printing is an attractive option. The clinical effectiveness remains unproven
    • …
    corecore