169 research outputs found

    Perceptual Learning, Long-Range Horizontal Connections And Top-Down Influences In Primary Visual Cortex

    Get PDF
    The earliest cortical stage of visual processing, the primary visual cortex, has long been seen as a static preprocessor that finds local edges and their orientation like a linear filter bank, and passes this information on to downstream visual areas. This view has been challenged in recent years since the discovery of contextual influences, that is, interactions between the responses of neurons that encode for non-overlapping adjacent areas of visual space, and their anatomical substrate, long-range horizontal connections. These contextual interactions have been shown in awake behaving primates to be modulated depending on the task the animals are performing. A first set of electrophysiological experiments has shown with the help of information theory that when an animal performed one of two tasks on the same visual display, the contextual modulations of the task-relevant parts of the visual display contained more information about the stimulus position than when the same elements were task-irrelevant. A second set of experiments on contour integration was analyzed with ROC analysis to show that an ideal observer could predict the presence of an embedded contour from the spike count of a single neuron on a single trial as well as the animal’s behavioral performance. A final set of experiments showed that prior to learning the same contour integration task, the responses did not contain any information about the stimulus position, that the information in the response increased in parallel with the animals performance during learning, and that the enhanced response after learning disappeared during anesthesia, but is only weakened when performing an irrelevant task in a different part of visual space. Last, a neural network is presented that allows gating of long-range horizontal connections by top-down feedback. The stability and the dynamic behavior of the network have been established with phase-plane analysis. Large-scale simulations have been performed to confirm the stability and show the enhanced contour integration of realistic stimuli as a function of feedback gain. This model has fit quantitatively the electrophysiological experiments of contour integration

    A mechanistic model of motion processing in the early visual system

    Get PDF
    A prerequisite for the perception of motion in primates is the transformation of varying intensities of light on the retina into an estimation of position, direction and speed of coherent objects. The neuro-computational mechanisms relevant for object feature encoding have been thoroughly explored, with many neurally plausible models able to represent static visual scenes. However, motion estimation requires the comparison of successive scenes through time. Precisely how the necessary neural dynamics arise and how other related neural system components interoperate have yet to be shown in a large-scale, biologically realistic simulation. The proposed model simulates a spiking neural network computation for representing object velocities in cortical areas V1 and middle temporal area (MT). The essential neural dynamics, hypothesized to reside in networks of V1 simple cells, are implemented through recurrent population connections that generate oscillating spatiotemporal tunings. These oscillators produce a resonance response when stimuli move in an appropriate manner in their receptive fields. The simulation shows close agreement between the predicted and actual impulse responses from V1 simple cells using an ideal stimulus. By integrating the activities of like V1 simple cells over space, a local measure of visual pattern velocity can be produced. This measure is also the linear weight of an associated velocity in a retinotopic map of optical flow. As a demonstration, the classic motion stimuli of drifting sinusoidal gratings and variably coherent dots are used as test stimuli and optical flow maps are generated. Vector field representations of this structure may serve as inputs for perception and decision making processes in later brain areas

    Modelling the human perception of shape-from-shading

    Get PDF
    Shading conveys information on 3-D shape and the process of recovering this information is called shape-from-shading (SFS). This thesis divides the process of human SFS into two functional sub-units (luminance disambiguation and shape computation) and studies them individually. Based on results of a series of psychophysical experiments it is proposed that the interaction between first- and second-order channels plays an important role in disambiguating luminance. Based on this idea, two versions of a biologically plausible model are developed to explain the human performances observed here and elsewhere. An algorithm sharing the same idea is also developed as a solution to the problem of intrinsic image decomposition in the field of image processing. With regard to the shape computation unit, a link between luminance variations and estimated surface norms is identified by testing participants on simple gratings with several different luminance profiles. This methodology is unconventional but can be justified in the light of past studies of human SFS. Finally a computational algorithm for SFS containing two distinct operating modes is proposed. This algorithm is broadly consistent with the known psychophysics on human SFS

    Neural models of inter-cortical networks in the primate visual system for navigation, attention, path perception, and static and kinetic figure-ground perception

    Full text link
    Vision provides the primary means by which many animals distinguish foreground objects from their background and coordinate locomotion through complex environments. The present thesis focuses on mechanisms within the visual system that afford figure-ground segregation and self-motion perception. These processes are modeled as emergent outcomes of dynamical interactions among neural populations in several brain areas. This dissertation specifies and simulates how border-ownership signals emerge in cortex, and how the medial superior temporal area (MSTd) represents path of travel and heading, in the presence of independently moving objects (IMOs). Neurons in visual cortex that signal border-ownership, the perception that a border belongs to a figure and not its background, have been identified but the underlying mechanisms have been unclear. A model is presented that demonstrates that inter-areal interactions across model visual areas V1-V2-V4 afford border-ownership signals similar to those reported in electrophysiology for visual displays containing figures defined by luminance contrast. Competition between model neurons with different receptive field sizes is crucial for reconciling the occlusion of one object by another. The model is extended to determine border-ownership when object borders are kinetically-defined, and to detect the location and size of shapes, despite the curvature of their boundary contours. Navigation in the real world requires humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature. In primates, MSTd has been implicated in heading perception. A model of V1, medial temporal area (MT), and MSTd is developed herein that demonstrates how MSTd neurons can simultaneously encode path curvature and heading. Human judgments of heading are accurate in rigid environments, but are biased in the presence of IMOs. The model presented here explains the bias through recurrent connectivity in MSTd and avoids the use of differential motion detectors which, although used in existing models to discount the motion of an IMO relative to its background, is not biologically plausible. Reported modulation of the MSTd population due to attention is explained through competitive dynamics between subpopulations responding to bottom-up and top- down signals

    Cognitive computing: algorithm design in the intersection of cognitive science and emerging computer architectures

    Full text link
    For the first time in decades computers are evolving into a fundamentally new class of machine. Transistors are still getting smaller, more economical, and more power-efficient, but operating frequencies leveled off in the mid-2000's. Today, improving performance requires placing a larger number of slower processing cores on each of many chips. Software written for such machines must scale out over many cores rather than scaling up with a faster single core. Biological computation is an extreme manifestation of such a many-slow-core architecture and therefore offers a potential source of ideas for leveraging new hardware. This dissertation addresses several problems in the intersection of emerging computer architectures and biological computation, termed Cognitive Computing: What mechanisms are necessary to maintain stable representations in a large distributed learning system? How should complex biologically-inspired algorithms be tested? How do visual sensing limitations like occlusion influence performance of classification algorithms? Neurons have a limited dynamic output range, but must process real-world signals over a wide dynamic range without saturating or succumbing to endogenous noise. Many existing neural network models leverage spatial competition to address this issue, but require hand-tuning of several parameters for a specific, fixed distribution of inputs. Integrating spatial competition with a stabilizing learning process produces a neural network model capable of autonomously adapting to a non-stationary distribution of inputs. Human-engineered complex systems typically include a number of architectural features to curtail complexity and simplify testing. Biological systems do not obey these constraints. Biologically-inspired algorithms are thus dramatically more difficult to engineer. Augmenting standard tools from the software engineering community with features targeted towards biologically-inspired systems is an effective mitigation. Natural visual environments contain objects that are occluded by other objects. Such occlusions are under-represented in the standard benchmark datasets for testing classification algorithms. This bias masks the negative effect of occlusion on performance. Correcting the bias with a new dataset demonstrates that occlusion is a dominant variable in classification performance. Modifying a state-of-the-art algorithm with mechanisms for occlusion resistance doubles classification performance in high-occlusion cases without penalty for unoccluded objects

    Approximate Spatial Layout Processing in the Visual System: Modeling Texture-Based Segmentation and Shape Estimation

    Get PDF
    Moving through the environment, grasping objects, orienting oneself, and countless other tasks all require information about spatial organization. This in turn requires determining where surfaces, objects and other elements of a scene are located and how they are arranged. Humans and other animals can extract spatial organization from vision rapidly and automatically. To better understand this capability, it would be useful to know how the visual system can make an initial estimate of the spatial layout. Without time or opportunity for a more careful analysis, a rough estimate may be all that the system can extract. Nevertheless, rough spatial information may be sufficient for many purposes, even if it is devoid of details that are important for tasks such as object recognition. The human visual system uses many sources of information for estimating layout. Here I focus on one source in particular: visual texture. I present a biologically reasonable, computational model of how the system can exploit patterns of texture for performing two basic tasks in spatial layout processing: locating possible surfaces in the visual input, and estimating their approximate shapes. Separately, these two tasks have been studied extensively, but they have not previously been examined together in the context of a model grounded in neurophysiology and psychophysics. I show that by integrating segmentation and shape estimation, a system can share information between these processes, allowing the processes to constrain and inform each other as well as save on computations. The model developed here begins with the responses of simulated complex cells of the primary visual cortex, and combines a weak membrane/functional minimization approach to segmentation with a shape estimation method based on tracking changes in the average dominant spatial frequencies across a surface. It includes mechanisms for detecting untextured areas and flat areas in an input image. In support of the model, I present a software simulation that can perform texture-based segmentation and shape estimation on images containing multiple, curved, textured surfaces.Ph.D.Applied SciencesBiological SciencesCognitive psychologyComputer scienceNeurosciencesPsychologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/131446/2/9909908.pd

    The role of posterior parietal cortex in multisensory decision-making

    Get PDF
    Making a decision consists of committing to a plan of action, usually selected between two or more competing alternatives. Numerous fields have studied the processes involved in decision-making including psychology, economics, philosophy and statistics, to name only a few. In neuroscience the study of decision-making has been extremely fruitful in recent years and has focused on two main aspects: (1) perceptual decisionmaking, interested in understanding how external information is perceived by the sensory systems and used to make decisions; (2) value based decision-making, interested in the mechanisms that cause and result from the association of subjective values to the possible outcomes of a decision.(...
    • …
    corecore