449 research outputs found

    Throughput Analysis Model for IEEE 802.11e EDCA with Multiple Access Categories

    Get PDF
    IEEE 802.11e standard has been specified to support differentiated quality of service (QoS), one of the critical issues on the conventional IEEE 802.11 wireless local area networks (WLANs). Enhanced Distributed Channel Access (EDCA) is the fundamental and mandatory contention-based channel access method of IEEE 802.11e, and delivers traffic based on differentiated Access Categories (ACs). A general three dimensional Markov chain model of IEEE 802.11e EDCA for performance analysis is proposed in this paper. The analytical model considers multiple stations with an arbitrary number of different ACs. It also differentiates the contention window (CW) sizes and the arbitration interframe spaces (AIFSs), and considers virtual collision mechanism. Based on the model, the saturation throughput of EDCA is derived, and the accuracy of the proposed model is validated via simulations

    Setting the parameters right for two-hop IEEE 802.11e ad hoc networks

    Get PDF
    Two-hop ad-hoc networks, in which some nodes forward traffic for multiple sources, with which they also compete for channel access suffer from large queues building up in bottleneck nodes. This problem can often be alleviated by using IEEE 802.11e to give preferential treatment to bottleneck nodes. Previous results have shown that differentiation parameters can be used to allocate capacity in a more efficient way in the two-hop scenario. However, the overall throughput of the bottleneck may differ considerably, depending on the differentiation method used. By applying a very fast and accurate analysis method, based on steady-state analysis of an QBD-type infinite Markov chain, we find the maximum throughput that is possible per differentiation parameter. All possible parameter settings are explored with respect to the maximum throughput conditioned on a maximum buffer occupancy. This design space exploration cannot be done with network simulators like NS2 or Opnet, as each simulation run simply takes to long.\ud The results, which have been validated by detailed simulations, show that by differentiating TXOP it is possible to achieve a throughput that is about 50% larger than when differentiating AIFS and CW_min.\u

    An analytical packet/flow-level modelling approach for wireless LANs with Quality-of-Service support

    Get PDF
    We present an analytical packet/flow-level modelling approach for the performance analysis of IEEE 802.11e WLAN, where we explicitly take into account QoS differentiation mechanisms based on minimum contention window size values and Arbitration InterFrame Space (AIFS) values, as included in the Enhanced Distributed Channel Access (EDCA) protocol of the 802.11e standard. We first enhance the packet-level approach previously used for best-effort WLANs to include traffic classes with different QoS requirements. The packet-level model approach yields service weights that discriminate among traffic classes. From these observations, the packet/flow-level model for 802.11e is the \textit{generalized} discriminatory processor-sharing (GDPS) queueing model where the state-dependent system capacity is distributed among active traffic classes according to state-dependent priority weights. Extensive simulations show that the discriminatory processor-sharing model closely represents the flow behavior of 802.11e

    A Comprehensive Study of the Enhanced Distributed Control Access (EDCA) Function

    Get PDF
    This technical report presents a comprehensive study of the Enhanced Distributed Control Access (EDCA) function defined in IEEE 802.11e. All the three factors are considered. They are: contention window size (CW), arbitration inter-frame space (AIFS), and transmission opportunity limit (TXOP). We first propose a discrete Markov chain model to describe the channel activities governed by EDCA. Then we evaluate the individual as well as joint effects of each factor on the throughput and QoS performance. We obtain several insightful observations showing that judiciously using the EDCA service differentiation mechanism is important to achieve maximum bandwidth utilization and user-specified QoS performance. Guided by our theoretical study, we devise a general QoS framework that provides QoS in an optimal way. The means of realizing the framework in a specific network is yet to be studied

    Real-Time Misbehavior Detection in IEEE 802.11e Based WLANs

    Full text link
    The Enhanced Distributed Channel Access (EDCA) specification in the IEEE 802.11e standard supports heterogeneous backoff parameters and arbitration inter-frame space (AIFS), which makes a selfish node easy to manipulate these parameters and misbehave. In this case, the network-wide fairness cannot be achieved any longer. Many existing misbehavior detectors, primarily designed for legacy IEEE 802.11 networks, become inapplicable in such a heterogeneous network configuration. In this paper, we propose a novel real-time hybrid-share (HS) misbehavior detector for IEEE 802.11e based wireless local area networks (WLANs). The detector keeps updating its state based on every successful transmission and makes detection decisions by comparing its state with a threshold. We develop mathematical analysis of the detector performance in terms of both false positive rate and average detection rate. Numerical results show that the proposed detector can effectively detect both contention window based and AIFS based misbehavior with only a short detection window.Comment: Accepted to IEEE Globecom 201

    Optimal Configuration of 802.1e EDCA for Real-Time and Data Traffic

    Get PDF
    The enhanced distributed channel access (EDCA) mechanism of the IEEE 802.11e standard provides quality-of-service (QoS) support through service differentiation by using different medium-access-control (MAC) parameters for different stations. The configuration of these parameters, however, is still an open research challenge, as the standard provides only a set of fixed recommended values that do not take into account the current wireless local area network (WLAN) conditions and, therefore, lead to suboptimal performance. In this paper, we propose a novel algorithm for EDCA that, given the throughput and delay requirements of the stations that are present in the WLAN, computes the optimal configuration of the EDCA parameters. We first present a throughput and delay analysis that provides the mathematical foundation upon which our algorithm is based. This analysis is validated through simulations of different traffic sources (both data and real time) and EDCA configurations. We then propose a mechanism to derive the optimal configuration of the EDCA parameters, given a set of performance criteria for throughput and delay. We assess the effectiveness of the configuration provided by our algorithm by comparing it against 1) the recommended values by the standard, 2) the results from an exhaustive search over the parameter space, and 3) previous configuration proposals, which are both standard and nonstandard compliant. Results show that our configuration outperforms all other approaches.European Community's Seventh Framework ProgramThis work was supported in part by the European Community’s Seventh Framework Program (FP7/2007-2013) under Grant Agreement 214994.Publicad
    corecore