117,045 research outputs found

    Traffic modelling in WLANs and cellular networks.

    Get PDF
    Over the past several years there has been a considerable amount of research in the field of traffic modelling for WLANs and Cellular Networks as well as the integration of these networks. To date, the focus of published work has been largely on the operation of delay sensitive calls. Because the voice calls are no longer the only service in wireless and cellular systems, multi-service traffic networks now consist of integrated services with distinctive Quality of Service (QoS) requirements. Therefore, a number of different schemes have been proposed to deal with this problem. Most of these schemes only consider mobility and multi-service traffic characteristics. However, few studies have considered the impact of buffering of voice calls in integrated voice and data services. Therefore, we aim to make a critical investigation of existing traffic models and offer generic traffic schemes for WLAN and Cellular networks in order to analyse the impact of buffering of voice calls in hybrid networks. For this purpose, an analytical model for performance evaluation of a single server network with voice and data traffic is considered. In this system, voice is given priority but can be buffered in a limited way. The analysis shows that this approach can be used in fast mobile systems

    Delay analysis for wireless applications using a multiservice multiqueue processor sharing model

    Get PDF
    The ongoing development of wireless networks supporting multimedia applications requires service providers to efficiently deliver complex Quality of Service (QoS) requirements. The wide range of new applications in these networks significantly increases the difficulty of network design and dimensioning to meet QoS requirements. Medium Access Control (MAC) protocols affect QoS achieved by wireless networks. Research on analysis and performance evaluation is important for the efficient protocol design. As wireless networks feature scarce resources that are simultaneously shared by all users, processor sharing (PS) models were proposed for modelling resource sharing mechanisms in such systems. In this thesis, multi-priority MAC protocols are proposed for handling the various service traffic types. Then, an investigation of multiservice multiqueue PS models is undertaken to analyse the delay for some recently proposed wireless applications. We start with an introduction to MAC protocols for wireless networks which are specified in IEEE standards and then review scheduling algorithms which were proposed to work with the underlying MAC protocols to cooperatively achieve QoS goals. An overview of the relevant literature is given on PS models for performance analysis and evaluation of scheduling algorithms. We propose a multiservice multiqueue PS model using a scheduling scheme in multimedia wireless networks with a comprehensive description of the analytical solution. Firstly, we describe the existing multiqueue processor sharing (MPS) model, which uses a fixed service quantum at each queue, and correct a subtle incongruity in previous solutions presented in the literature. Secondly, a new scheduling framework is proposed to extend the previous MPS model to a general case. This newly proposed analytical approach is based on the idea that the service quantum arranged by a MAC scheduling controller to service data units can be priority-based. We obtain a closed-form expression for the mean delay of each service class in this model. In summary, our new approach simplifies MAC protocols for multimedia applications into an analytical model that includes more complex and realistic traffic models without compromising details of the protocol and significantly reduces the number of MAC headers, thus the overall average delay will be decreased. In response to using the studied multiservice multiqueue PS models, we apply the MPS model to two wireless applications: Push to Talk (PTT) service over GPRS/GSM networks and the Worldwide Interoperability for Microwave Access (WiMAX) networks. We investigate the uplink delay of PTT over traditional GPRS/GSM networks and the uplink delay for WiMAX Subscriber Station scheduler under a priority-based fair scheduling. MAC structures capable of supporting dynamically varying traffic are studied for the networks, especially, with the consideration of implementation issues. The model provides useful insights into the dynamic performance behaviours of GPRS/GSM and WiMAX networks with respect to various system parameters and comprehensive traffic conditions. We then evaluate the model under some different practical traffic scenarios. Through modelling of the operation of wireless access systems, under a variety of multimedia traffic, our analytical approaches provide practical analysis guidelines for wireless network dimensioning

    Modelling and performability evaluation of Wireless Sensor Networks

    Get PDF
    This thesis presents generic analytical models of homogeneous clustered Wireless Sensor Networks (WSNs) with a centrally located Cluster Head (CH) coordinating cluster communication with the sink directly or through other intermediate nodes. The focus is to integrate performance and availability studies of WSNs in the presence of sensor nodes and channel failures and repair/replacement. The main purpose is to enhance improvement of WSN Quality of Service (QoS). Other research works also considered in this thesis include modelling of packet arrival distribution at the CH and intermediate nodes, and modelling of energy consumption at the sensor nodes. An investigation and critical analysis of wireless sensor network architectures, energy conservation techniques and QoS requirements are performed in order to improve performance and availability of the network. Existing techniques used for performance evaluation of single and multi-server systems with several operative states are investigated and analysed in details. To begin with, existing approaches for independent (pure) performance modelling are critically analysed with highlights on merits and drawbacks. Similarly, pure availability modelling approaches are also analysed. Considering that pure performance models tend to be too optimistic and pure availability models are too conservative, performability, which is the integration of performance and availability studies is used for the evaluation of the WSN models developed in this study. Two-dimensional Markov state space representations of the systems are used for performability modelling. Following critical analysis of the existing solution techniques, spectral expansion method and system of simultaneous linear equations are developed and used to solving the proposed models. To validate the results obtained with the two techniques, a discrete event simulation tool is explored. In this research, open queuing networks are used to model the behaviour of the CH when subjected to streams of traffic from cluster nodes in addition to dynamics of operating in the various states. The research begins with a model of a CH with an infinite queue capacity subject to failures and repair/replacement. The model is developed progressively to consider bounded queue capacity systems, channel failures and sleep scheduling mechanisms for performability evaluation of WSNs. Using the developed models, various performance measures of the considered system including mean queue length, throughput, response time and blocking probability are evaluated. Finally, energy models considering mean power consumption in each of the possible operative states is developed. The resulting models are in turn employed for the evaluation of energy saving for the proposed case study model. Numerical solutions and discussions are presented for all the queuing models developed. Simulation is also performed in order to validate the accuracy of the results obtained. In order to address issues of performance and availability of WSNs, current research present independent performance and availability studies. The concerns resulting from such studies have therefore remained unresolved over the years hence persistence poor system performance. The novelty of this research is a proposed integrated performance and availability modelling approach for WSNs meant to address challenges of independent studies. In addition, a novel methodology for modelling and evaluation of power consumption is also offered. Proposed model results provide remarkable improvement on system performance and availability in addition to providing tools for further optimisation studies. A significant power saving is also observed from the proposed model results. In order to improve QoS for WSN, it is possible to improve the proposed models by incorporating priority queuing in a mixed traffic environment. A model of multi-server system is also appropriate for addressing traffic routing. It is also possible to extend the proposed energy model to consider other sleep scheduling mechanisms other than On-demand proposed herein. Analysis and classification of possible arrival distribution of WSN packets for various application environments would be a great idea for enabling robust scientific research

    Performance modeling of fault-tolerant circuit-switched communication networks

    Get PDF
    Circuit switching (CS) has been suggested as an efficient switching method for supporting simultaneous communications (such as data, voice, and images) across parallel systems due to its ability to preserve both communication performance and fault-tolerant demands in such systems. In this paper we present an efficient scheme to capture the mean message latency in 2D torus with CS in the presence of faulty components. We have also conducted extensive simulation experiments, the results of which are used to validate the analytical mode

    Modeling, Analysis and Impact of a Long Transitory Phase in Random Access Protocols

    Get PDF
    In random access protocols, the service rate depends on the number of stations with a packet buffered for transmission. We demonstrate via numerical analysis that this state-dependent rate along with the consideration of Poisson traffic and infinite (or large enough to be considered infinite) buffer size may cause a high-throughput and extremely long (in the order of hours) transitory phase when traffic arrivals are right above the stability limit. We also perform an experimental evaluation to provide further insight into the characterisation of this transitory phase of the network by analysing statistical properties of its duration. The identification of the presence as well as the characterisation of this behaviour is crucial to avoid misprediction, which has a significant potential impact on network performance and optimisation. Furthermore, we discuss practical implications of this finding and propose a distributed and low-complexity mechanism to keep the network operating in the high-throughput phase.Comment: 13 pages, 10 figures, Submitted to IEEE/ACM Transactions on Networkin

    A general analytical model of adaptive wormhole routing in k-ary n-cubes

    Get PDF
    Several analytical models of fully adaptive routing have recently been proposed for k-ary n-cubes and hypercube networks under the uniform traffic pattern. Although,hypercube is a special case of k-ary n-cubes topology, the modeling approach for hypercube is more accurate than karyn-cubes due to its simpler structure. This paper proposes a general analytical model to predict message latency in wormhole-routed k-ary n-cubes with fully adaptive routing that uses a similar modeling approach to hypercube. The analysis focuses Duato's fully adaptive routing algorithm [12], which is widely accepted as the most general algorithm for achieving adaptivity in wormhole-routed networks while allowing for an efficient router implementation. The proposed model is general enough that it can be used for hypercube and other fully adaptive routing algorithms

    On the performance of routing algorithms in wormhole-switched multicomputer networks

    Get PDF
    This paper presents a comparative performance study of adaptive and deterministic routing algorithms in wormhole-switched hypercubes and investigates the performance vicissitudes of these routing schemes under a variety of network operating conditions. Despite the previously reported results, our results show that the adaptive routing does not consistently outperform the deterministic routing even for high dimensional networks. In fact, it appears that the superiority of adaptive routing is highly dependent to the broadcast traffic rate generated at each node and it begins to deteriorate by growing the broadcast rate of generated message
    • …
    corecore