658 research outputs found

    Attacking and securing Network Time Protocol

    Get PDF
    Network Time Protocol (NTP) is used to synchronize time between computer systems communicating over unreliable, variable-latency, and untrusted network paths. Time is critical for many applications; in particular it is heavily utilized by cryptographic protocols. Despite its importance, the community still lacks visibility into the robustness of the NTP ecosystem itself, the integrity of the timing information transmitted by NTP, and the impact that any error in NTP might have upon the security of other protocols that rely on timing information. In this thesis, we seek to accomplish the following broad goals: 1. Demonstrate that the current design presents a security risk, by showing that network attackers can exploit NTP and then use it to attack other core Internet protocols that rely on time. 2. Improve NTP to make it more robust, and rigorously analyze the security of the improved protocol. 3. Establish formal and precise security requirements that should be satisfied by a network time-synchronization protocol, and prove that these are sufficient for the security of other protocols that rely on time. We take the following approach to achieve our goals incrementally. 1. We begin by (a) scrutinizing NTP's core protocol (RFC 5905) and (b) statically analyzing code of its reference implementation to identify vulnerabilities in protocol design, ambiguities in specifications, and flaws in reference implementations. We then leverage these observations to show several off- and on-path denial-of-service and time-shifting attacks on NTP clients. We then show cache-flushing and cache-sticking attacks on DNS(SEC) that leverage NTP. We quantify the attack surface using Internet measurements, and suggest simple countermeasures that can improve the security of NTP and DNS(SEC). 2. Next we move beyond identifying attacks and leverage ideas from Universal Composability (UC) security framework to develop a cryptographic model for attacks on NTP's datagram protocol. We use this model to prove the security of a new backwards-compatible protocol that correctly synchronizes time in the face of both off- and on-path network attackers. 3. Next, we propose general security notions for network time-synchronization protocols within the UC framework and formulate ideal functionalities that capture a number of prevalent forms of time measurement within existing systems. We show how they can be realized by real-world protocols (including but not limited to NTP), and how they can be used to assert security of time-reliant applications-specifically, cryptographic certificates with revocation and expiration times. Our security framework allows for a clear and modular treatment of the use of time in security-sensitive systems. Our work makes the core NTP protocol and its implementations more robust and secure, thus improving the security of applications and protocols that rely on time

    Time synchronization in ad hoc wireless networks

    Get PDF

    Online Photovoltaic Monitoring System

    Get PDF
    The goal of this project is to create an online photovoltaic monitoring system. This is achieved by designing a photovoltaic system, building the analog circuitry for proper voltage and current readings, and creating a webserver that displays the monitored data in a user-friendly charting interface. The webserver is in WAN (Wide Area Network) and could therefore be accessed anywhere in the world that benefits from an Internet connection. The project could potentially be adapted to service different types of photovoltaic systems to insure proper functioning and data monitoring

    Time keeping in myriad networks : theories, solutions and applications

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2001.Includes bibliographical references (leaves 70-72).Distributed sensor networks make extensive use of a common time reference. In this work we address the problem of time dissemination in a packet switched network when the nodes are NOT generally all connected to an accurate, external time reference source. We thoroughly analyze Network Time Protocol - version 3 and identify its oversimplified clock modeling and its neglect of network delay variance (network jitter) as the primal causes for its inaccuracy. We explicitly address frequency skew in our clock model and propose a novel Kalman filtering technique for de-noising (remove of network jitter) during the NTP time synchronization process. The parameters of the Kalman linear estimator are optimal and they are computed online from the network environment, with a well-defined procedure. Our End-to-End technique decreases NTP rms error by two orders of magnitude and is compared with a software phased lock loop and a linear programming technique, with cross traffic exhibiting long-range dependence (fractional Brownian motion cross-traffic) or no dependence at all (white Gaussian case). We conclude with applications over packet switched networks that require time synchronization, like spatial filtering (beam-forming). The suite of algorithms and applications define a new class of packet switched networks, called Myriad Networks.by Aggelos Anastasiou Bletsas.S.M
    • …
    corecore