60 research outputs found

    Multihop clustering algorithm for load balancing in wireless sensor networks

    Get PDF
    The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach

    Multihop clustering algorithm for load balancing in wireless sensor networks

    Get PDF
    The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach

    A Survey on Two New Secure and Efficient Data Transmission Protocols SET-IBS and SET-IBOOS for WSN

    Get PDF
    Data transmission in a secure way is a critical issue for wireless sensor networks (WSNs). Clustering is an effective and practical way to enhance the system performance of WSNs. The system proposes two new Secure and Efficient Data Transmission Protocols. This technique is useful for Cluster Based Wireless Sensor Networks. SET-IBS and SET-IBOOS are proposed protocols which uses Identity Based Digital Signature (IBS) and Identity Based Online/Offline Digital Signatures respectively. In general, for any secure data transmission protocols key exchange is a big overhead. This is removed in the proposed system by introducing Base Station. SET-IBOOS Scheme reduces the computational overhead. DOI: 10.17762/ijritcc2321-8169.15036

    Enhanced Clustering Routing Protocol for Power-Efficient Gathering in Wireless Sensor Network

    Get PDF
    Wireless sensor network (WSN) is a new and fast advancing technology, which is opening up many opportunities in the field of remote sensing and data monitoring. In spite of the numerous applications of WSN, issues related to determining a suitable and accurate radio model that will foster energy conservation in the network limit the performance of WSN routing protocols. A number of radio models have been proposed to address this issue. However, the underlying assumptions and inaccurate configuration of these radio models make them impractical and often lead to mismanagement of scarce energy and computational resources. This paper addresses this problem by proposing an enhanced radio model that adapts to the frequent changes in the location of the sensor nodes and is robust enough to report reliable data to the base station despite fluctuations due to interference. The impact of incorporating stepwise energy level and specialized data transmission schemes in the proposed radio model is also investigated in this paper. The performance of the proposed radio model is evaluated using OMNET++ and MATLAB and the results obtained is benchmarked against PEGASIS. It is shown by simulation that the novel LEACH-IMP performs better with respect to energy consumption, number of links faults, number of packets received, signal attenuation, and network lifetime

    ARCS: An Energy-Efficient Clustering Scheme for Sensor Network Monitoring Systems

    Get PDF

    MeMLO: Mobility-Enabled Multi-Level Optimization Sensor Network

    Get PDF
    The paper presents a technique called as Mobility-enabled Multi Level Optimization (MeMLO) that addressing the existing problem of clustering in wireless sensor net-work (WSN). The technique enables selection of aggregator node based on multiple optimi-zation attribute which gives better decision capability to the clustering mechanism by choosing the best aggregator node. The outcome of the study shows MeMLO is highly capable of minimizing the halt time of mobile node that significantly lowers the transmit power of aggregator node. The simulation outcome shows negligible computational com-plexity, faster response time, and highly energy efficient for large scale WSN for longer simulation rounds as compared to conventional LEACH algorithm

    Genetic-fuzzy based load balanced protocol for WSNs

    Get PDF
    Recent advancement in wireless sensor networks primarily depends upon energy constraint. Clustering is the most effective energy-efficient technique to provide robust, fault-tolerant and also enhance network lifetime and coverage. Selection of optimal number of cluster heads and balancing the load of cluster heads are most challenging issues. Evolutionary based approach and soft computing approach are best suitable for counter the above problems rather than mathematical approach. In this paper we propose hybrid technique where Genetic algorithm is used for the selection of optimal number of cluster heads and their fitness value of chromosome to give optimal number of cluster head and minimizing the energy consumption is provided with the help of fuzzy logic approach. Finally cluster heads uses multi-hop routing based on A*(A-star) algorithm to send aggregated data to base station which additionally balance the load. Comparative study among LEACH, CHEF, LEACH-ERE, GAEEP shows that our proposed algorithm outperform in the area of total energy consumption with various rounds and network lifetime, number of node alive versus rounds and packet delivery or packet drop ratio over the rounds, also able to balances the load at cluster head

    Energy Saving Hierarchical Routing Protocol in WSN

    Get PDF
    The area of Wireless Sensor Networks (WSN) bring a new era of connected on-demand embedding systems which are mostly resource constrained. Despite of having design and operational challenges in real-time, WSN is currently being deployed for wide range of applications where traditional networking systems are most of time unfeasible. The prime focus of the study is to realize the significance of energy efficient routing in WSN. The core motivation is derived by addressing energy problems of WSN. An extensive analysis drawn from reviewing literatures, clearly shows that very few studies incorporated optimization towards modeling the routing schema. This chapter introduces a methodology consisting of three different types of analytical modeling where two of them focus on energy efficient clustering and another one is integrated to attain higher degree of security during data aggregation. The chapter basically provides an insight into the background of the problem which is related with the energy and security in WSN and also further provides preliminary information regarding the research overview. Further the study performs a thorough investigation on existing literatures to extract the open research problem. It basically highlights the gap which still exists and does not meet the requirements of proper energy and security demands. Literature survey on hierarchical protocols of WSN and their basic characteristics towards energy conservation is performed
    • …
    corecore