1,278 research outputs found

    Development and characterisation of traceable force measurement for nanotechnology

    Get PDF
    Traceable low force metrology should be an essential tool for nanotechnology. Traceable measurement of micro- and nanonewton forces would allow independent measurement and comparison on material properties, MEMS behaviour and nanodimensional measurement uncertainties. Yet the current traceability infrastructure in the UK is incomplete. This thesis describes the incremental development of the low force facility at the National Physical Laboratory (NPL). The novel contribution of this thesis has three components. First, specific modifications to the NPL Low Force Balance were undertaken. This involved developing novel or highly modified solutions to address key issues, as well as undertaking detailed comparions with external ans internal traceability references. Second, a triskelion force sensor flexure was proposed and mathematically modelled using both analytical and finite element techniques, and compared to experimentally measured spring constant estimates. The models compared satisfactorily, though fabrication defects in developed prototype artefacts limited the experimental confirmation of the models. Third, a piezoelectric sensor approach for quasistatic force measurement was proposed, experimentally evaluated and rejected. Finally, an improved design for a low force transfer artefact system is presented, harnessing the findings of the reported investigations. The proposed design combines proven strain-sensing technology with the advantageous triskelion flexure, incorporating an external stage and packaging aspects to achieve the requirements for a traceable low force transfer artefact

    Quantum Rabi interferometry of motion and radiation

    Get PDF
    The precise determination of a displacement of a mechanical oscillator or a microwave field in a predetermined direction in phase space can be carried out with trapped ions or superconducting circuits, respectively, by coupling the oscillator with ancilla qubits. Through that coupling, the displacement information is transferred to the qubits which are then subsequently read out. However, unambiguous estimation of displacement in an unknown direction in the phase space has not been attempted in such oscillator-qubit systems. Here, we propose a hybrid oscillator-qubit interferometric setup for the unambiguous estimation of phase space displacements in an arbitrary direction, based on feasible Rabi interactions beyond the rotating-wave approximation. Using such a hybrid Rabi interferometer for quantum sensing, we show that the performance is superior to the ones attained by single-mode estimation schemes and a conventional interferometer based on Jaynes-Cummings interactions. Moreover, we find that the sensitivity of the Rabi interferometer is independent of the thermal occupation of the oscillator mode, and thus cooling it to the ground state before sensing is not required. We also perform a thorough investigation of the effect of qubit dephasing and oscillator thermalization. We find the interferometer to be fairly robust, outperforming different benchmark estimation schemes even for large dephasing and thermalization

    Tactile 3D probing system for measuring MEMS with nanometer uncertainty : aspects of probing, design, manufacturing and assembly

    Get PDF
    Measurement underpins manufacturing technology, or in more popular terms: when you cannot measure it, you cannot manufacture it. This is true on any dimensional scale, so for microand nanotechnology to deliver manufactured products it must be supported by reliable metrology. Component miniaturization in the field of precision engineering and the development of micro electromechanical systems (MEMS) thus results in a demand for suitable measurement instruments for complex three-dimensional components with feature dimensions in the micrometer region and associated dimensional tolerances below 100 nm. As will be discussed in the first chapter of this thesis, several ultra precision coordinate measuring machines (CMMs) are developed. These CMMs are suitable for measuring complex threedimensional products, like MEMS and other miniaturized components. From a discussion on available probe systems in the first chapter it is apparent that, with respect to measurement uncertainty and applicability of measurements on MEMS and other miniaturized components, the performance of ultra precision CMMs is currently limited by the performance of available probe systems. The main reason is that the measurement using a probe system is not purely influenced by work piece topography, but also by interaction physics between probe tip and work piece. As the dimensional scale of the measurement decreases, the problems associated with this interaction become increasingly apparent. Typical aspects of this interaction include the influence of contact forces on plastic deformations in the contact region, surface forces and geometric and thermal effects. The influence of these aspects on the measurement result is discussed in the second chapter. This chapter will combine results from literature, simulation and experimental results to discuss the aspects that influence the measurement result in tactile probes. From these results it will become apparent that these aspects underlie the limitation for precision measurements on miniaturized components using tactile CMM metrology. As a result, these interaction aspects are the main challenge when designing ultra precision probes. The analysis of the interaction physics is used in the design of a novel silicon probing system with integrated piezo resistive strain gauges to measure a displacement of the probe tip. The result is a probe system with a colliding mass of 34 mg and an isotropic stiffness at the probe tip with a stiffness down to 50 N/m. The measurement range of the probing system is 30 µm, but in most measurements a range of 10 µm is used which slightly improves the signal to noise ratio. Calibration results using the planar differential laser interferometer setup as discussed in chapter 1 show a standard deviation of 2 nm over 2000 measurement points taken in a 6 hour time frame over a repeated 5.5 µm displacement. The combined 3D uncertainty of the probing system is estimated to be 17.4 nm. In order to measure micrometer scale structures, including holes and trenches, the probing system can be equipped with micrometer scale probe tips. The main limitation is the relative stiffness between the stylus and the suspension of the probing system. By design optimization, a ratio between the length and radius of the measurement part of the stylus of 50 can be obtained, making the probing system highly suitable for measuring these micrometer scale structures. So far, probe tips with a radius of 25 µm have been manufactured and work is being done to decrease this radius even further. The probing system is implemented on a high-accuracy coordinate measuring machine and is suitable for three-dimensional tactile measurements on miniaturized components with nanometer uncertainty. A main limitation when manufacturing the probe is assembly of the probe tip, stylus and chip which is discussed in chapter 4. Assembly of the probe is investigated in a series of experiments on an automated assembler. Based on these results, the design of the probe is optimized for assembly and the automated assembler is made suitable for assembly of the probe by implementation of a novel suction gripper. This resulted in an improvement in placement uncertainty at the tip by a factor of 10 and an increase in yield during assembly from 60 - 80% initially, to over 95%. In chapter 5 several experimental results with the probe system are discussed, including a quantification of the effects of surface forces on tactile measurements. It is shown that these effects are highly repeatable and result in an attraction of 40 µN and 60 µN in the xy- and z-direction, respectively. Moreover, it is shown that the influence of surface forces on a measurement in the xy-plane can be observed for a separation of 500 µm or less. Finally, conclusions and recommendations for further research are discussed in chapter 6

    Co-Nanomet: Co-ordination of Nanometrology in Europe

    Get PDF
    Nanometrology is a subfield of metrology, concerned with the science of measurement at the nanoscale level. Today’s global economy depends on reliable measurements and tests, which are trusted and accepted internationally. It must provide the ability to measure in three dimensions with atomic resolution over large areas. For industrial application this must also be achieved at a suitable speed/throughput. Measurements in the nanometre range should be traceable back to internationally accepted units of measurement (e.g. of length, angle, quantity of matter, and force). This requires common, validated measurement methods, calibrated scientific instrumentation as well as qualified reference samples. In some areas, even a common vocabulary needs to be defined. A traceability chain for the required measurements in the nm range has been established in only a few special cases. A common strategy for European nanometrology has been defined, as captured herein, such that future nanometrology development in Europe may build out from our many current strengths. In this way, European nanotechnology will be supported to reach its full and most exciting potential. As a strategic guidance, this document contains a vision for European nanometrology 2020; future goals and research needs, building out from an evaluation of the status of science and technology in 2010. It incorporates concepts for the acceleration of European nanometrology, in support of the effective commercial exploitation of emerging nanotechnologies. The field of nanotechnology covers a breadth of disciplines, each of which has specific and varying metrological needs. To this end, a set of four core technology fields or priority themes (Engineered Nanoparticles, Nanobiotechnology, Thin Films and Structured Surfaces and Modelling & Simulation) are the focus of this review. Each represents an area within which rapid scientific development during the last decade has seen corresponding growth in or towards commercial exploitation routes. This document was compiled under the European Commission Framework Programme 7 project, Co-Nanomet. It has drawn together input from industry, research institutes, (national) metrology institutes, regulatory and standardisation bodies across Europe. Through the common work of the partners and all those interested parties who have contributed, it represents a significant collaborative European effort in this important field. In the next decade, nanotechnology can be expected to approach maturity, as a major enabling technological discipline with widespread application. This document provides a guide to the many bodies across Europe in their activities or responsibilities in the field of nanotechnology and related measurement requirements. It will support the commercial exploitation of nanotechnology, as it transitions through this next exciting decade
    • …
    corecore