15 research outputs found

    Bio-Inspired Compressive Sensing based on Auditory Neural Circuits for Real-time Monitoring and Control of Civil Structures using Resource Constrained Sensor Networks.

    Full text link
    Recent natural hazard disasters including Hurricane Sandy (2012) and the Tohoku Earthquake (2011) have called public attention to the vulnerability of civil infrastructure systems. To enhance the resiliency of urban communities, arrays of wireless sensors and actuators have been proposed to monitor and control infrastructure systems in order to limit damage, speed emergency response, and make post-disaster decisions more efficiently. While great advances in the use of wireless sensor networks (WSNs) for the purposes of monitoring and control of civil infrastructure have been made, significant technological barriers have hindered their ability to be reliably used in the field for long durations. Some of these limitations include: reliance on finite, portable power supplies, limited radio bandwidth for data communication, and limited computational capacity. To resolve current bottlenecks, paradigm-altering approaches to the design of wireless monitoring and control systems are required. Through the process of evolution, biological central nervous systems (CNS) have evolved into highly adaptive and robust systems whose sensing and actuation capabilities far surpass the current capabilities of engineered (i.e., man-made) monitoring and control systems. In this dissertation, the mechanisms employed by biological sensory systems serve as sources of inspiration for overcoming the current challenges faced by wireless nodes for structural monitoring and control. The basic, yet elegant, methods of signal processing and data transmission used by the CNS are mimicked in this thesis to enable highly compressed communication with real-time data processing for WSNs engaged in infrastructure monitoring. Specifically, the parallelized time-frequency decomposition of the mammalian cochlea is studied, modeled, and recreated in an ultra-low power analog circuit. In lieu of transmitting data, the cochlea-inspired wireless sensors emulate the neurons by encoding filtered outputs into binary electrical spike trains for highly efficient wireless transmission. These transmitted spike train signals are processed for pattern classification of sensor data to identify structural damage and to perform feedback control in real-time. A key contribution of this thesis is the development and experimental validation of a bio-inspired wireless sensor node that exhibits large energy savings while employing real-time processing techniques, thus overcoming many of the current challenges of traditional wireless sensor nodes.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107302/1/cpeckens_1.pd

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    An Analytical Comparison of Locally-Connected Reconfigurable Neural Network Architectures Using a C. elegans Locomotive Model

    No full text
    The scale of modern neural networks is growing rapidly, with direct hardware implementations providing significant speed and energy improvements over their software counterparts. However, these hardware implementations frequently assume global connectivity between neurons and thus suffer from communication bottlenecks. Such issues are not found in biological neural networks. It should therefore be possible to develop new architectures to reduce the dependence on global communications by considering the connectivity of biological networks. This paper introduces two reconfigurable locally-connected architectures for implementing biologically inspired neural networks in real time. Both proposed architectures are validated using the segmented locomotive model of the C. elegans, performing a demonstration of forwards, backwards serpentine motion and coiling behaviours. Local connectivity is discovered to offer up to a 17.5× speed improvement over hybrid systems that use combinations of local and global infrastructure. Furthermore, the concept of locality of connections is considered in more detail, highlighting the importance of dimensionality when designing neuromorphic architectures. Convolutional Neural Networks are shown to map poorly to locally connected architectures despite their apparent local structure, and both the locality and dimensionality of new neural processing systems is demonstrated as a critical component for matching the function and efficiency seen in biological networks
    corecore