71,990 research outputs found

    Capacity analysis of suburban rail networks

    Get PDF
    As is well known, capacity evaluation and the identification of bottlenecks on rail networks are complex issues depending upon several technical elements. This is even more perceptible in metropolitan areas where different services (freight, long distance, metro/regional, etc.) are operated using the same limited infrastructures; as a consequence, these facilities may represent bottlenecks of the rail system since they are often highly utilized and congested. This paper tries to explore the issue of capacity evaluation of complex rail networks, proposing synthetic indicators and analyses for feasibility studies or strategic planning. The presented methodology suggests taking into account the main differences in infrastructure characteristics (e.g. single or double lines, signalling systems, terminus or passing stations, etc.) and rail services (e.g. diverse rolling stock, various frequencies, average distances and number of stops, etc.) in order to propose a general approach applicable for capacity analysis of a network as a whole, hence evaluating the utilization rate and the congestion on both lines and stations. To better explore and validate the methodology, an application to a line of the Naples’ suburban network is presented. The results confirm the applicability and effectiveness of the proposed approach; the outcomes indicate the capacity utilization rate of the considered facilities, pointing out likely bottlenecks and possible actions to improve the system efficiency

    Near field shielding of a wireless power transfer (WPT) current coil

    Get PDF
    The configuration of an infinite planar conductive shield is examined when it is excited by an electromagnetic near field generated by a coil current source as that of a wireless power transfer (WPT) system. The analytical expressions of the electromagnetic field based on the transmission theory of shielding are given for different frequencies and different incidence angles of the near field generated by the coil current, assuming the conductive planar shield placed in the close proximity of the coil. The obtained results are discussed and compared with other traditional analytical and numerical solutions

    Empirical exploration of air traffic and human dynamics in terminal airspaces

    Full text link
    Air traffic is widely known as a complex, task-critical techno-social system, with numerous interactions between airspace, procedures, aircraft and air traffic controllers. In order to develop and deploy high-level operational concepts and automation systems scientifically and effectively, it is essential to conduct an in-depth investigation on the intrinsic traffic-human dynamics and characteristics, which is not widely seen in the literature. To fill this gap, we propose a multi-layer network to model and analyze air traffic systems. A Route-based Airspace Network (RAN) and Flight Trajectory Network (FTN) encapsulate critical physical and operational characteristics; an Integrated Flow-Driven Network (IFDN) and Interrelated Conflict-Communication Network (ICCN) are formulated to represent air traffic flow transmissions and intervention from air traffic controllers, respectively. Furthermore, a set of analytical metrics including network variables, complex network attributes, controllers' cognitive complexity, and chaotic metrics are introduced and applied in a case study of Guangzhou terminal airspace. Empirical results show the existence of fundamental diagram and macroscopic fundamental diagram at the route, sector and terminal levels. Moreover, the dynamics and underlying mechanisms of "ATCOs-flow" interactions are revealed and interpreted by adaptive meta-cognition strategies based on network analysis of the ICCN. Finally, at the system level, chaos is identified in conflict system and human behavioral system when traffic switch to the semi-stable or congested phase. This study offers analytical tools for understanding the complex human-flow interactions at potentially a broad range of air traffic systems, and underpins future developments and automation of intelligent air traffic management systems.Comment: 30 pages, 28 figures, currently under revie

    Motion Planning of Uncertain Ordinary Differential Equation Systems

    Get PDF
    This work presents a novel motion planning framework, rooted in nonlinear programming theory, that treats uncertain fully and under-actuated dynamical systems described by ordinary differential equations. Uncertainty in multibody dynamical systems comes from various sources, such as: system parameters, initial conditions, sensor and actuator noise, and external forcing. Treatment of uncertainty in design is of paramount practical importance because all real-life systems are affected by it, and poor robustness and suboptimal performance result if it’s not accounted for in a given design. In this work uncertainties are modeled using Generalized Polynomial Chaos and are solved quantitatively using a least-square collocation method. The computational efficiency of this approach enables the inclusion of uncertainty statistics in the nonlinear programming optimization process. As such, the proposed framework allows the user to pose, and answer, new design questions related to uncertain dynamical systems. Specifically, the new framework is explained in the context of forward, inverse, and hybrid dynamics formulations. The forward dynamics formulation, applicable to both fully and under-actuated systems, prescribes deterministic actuator inputs which yield uncertain state trajectories. The inverse dynamics formulation is the dual to the forward dynamic, and is only applicable to fully-actuated systems; deterministic state trajectories are prescribed and yield uncertain actuator inputs. The inverse dynamics formulation is more computationally efficient as it requires only algebraic evaluations and completely avoids numerical integration. Finally, the hybrid dynamics formulation is applicable to under-actuated systems where it leverages the benefits of inverse dynamics for actuated joints and forward dynamics for unactuated joints; it prescribes actuated state and unactuated input trajectories which yield uncertain unactuated states and actuated inputs. The benefits of the ability to quantify uncertainty when planning the motion of multibody dynamic systems are illustrated through several case-studies. The resulting designs determine optimal motion plans—subject to deterministic and statistical constraints—for all possible systems within the probability space

    Solutions for IPv6-based mobility in the EU project MobyDick

    Get PDF
    Proceedings of the WTC 2002, 18th World Telecommunications Congress, Paris, France, 22 -27 September, 2002.Mobile Internet technology is moving towards a packet-based or, more precisely, IPv6-based network. Current solutions on Mobile IPv6 and other related QoS and AAA matters do not offer the security and quality users have come to take for granted. The EU IST project Moby Dick has taken on the challenge of providing a solution that integrates QoS, mobility and AAA in a heterogeneous access environment. This paper focuses on the mobility part of the project, describes and justifies the handover approach taken, shows how QoS-aware and secure handover is achieved, and introduces the project's paging concept. It shows that a transition to a fully integrated IP-RAN and IP-Backbone has become a distinct option for the future.Publicad

    Capsule system advanced development sterilization program

    Get PDF
    Capsule system advanced development sterilization program for Mars 71 lande

    Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    Get PDF
    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gasÂżliquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a Lagrangian framework, while accounting for bubbleÂżbubble and bubbleÂżwall interactions via an encounter model. The mass transfer rate is calculated for each individual bubble using a surface renewal model accounting for the instantaneous and local properties of the liquid phase in its vicinity. The distributions in space of chemical species residing in the liquid phase are computed from the coupled species balances considering the mass transfer from bubbles and reactions between the species. The model has been applied to simulate chemisorption of CO2 bubbles in NaOH solutions. Our results show that apart from hydrodynamics behavior, the model is able to predict the bubble size distribution as well as temporal and spatial variations of each chemical species involved
    • …
    corecore