3,605 research outputs found

    An analysis of the inertia weight parameter for binary particle swarm optimization

    Get PDF
    In particle swarm optimization, the inertia weight is an important parameter for controlling its search capability. There have been intensive studies of the inertia weight in continuous optimization, but little attention has been paid to the binary case. This study comprehensively investigates the effect of the inertia weight on the performance of binary particle swarm optimization, from both theoretical and empirical perspectives. A mathematical model is proposed to analyze the behavior of binary particle swarm optimization, based on which several lemmas and theorems on the effect of the inertia weight are derived. Our research findings suggest that in the binary case, a smaller inertia weight enhances the exploration capability while a larger inertia weight encourages exploitation. Consequently, this paper proposes a new adaptive inertia weight scheme for binary particle swarm optimization. This scheme allows the search process to start first with exploration and gradually move towards exploitation by linearly increasing the inertia weight. The experimental results on 0/1 knapsack problems show that the binary particle swarm optimization with the new increasing inertia weight scheme performs significantly better than that with the conventional decreasing and constant inertia weight schemes. This study verifies the efficacy of increasing inertia weight in binary particle swarm optimization

    information

    Get PDF
    In this study, an improved particle swarm optimization (PSO) algorithm, including 4 types of new velocity updating formulae (each is equal to the traditional PSO), was introduced. This algorithm was called the reverse direction supported particle swarm optimization (RDS-PSO) algorithm. The RDS-PSO algorithm has the potential to extend the diversity and generalization of traditional PSO by regulating the reverse direction information adaptively. To implement this extension, 2 new constants were added to the velocity update equation of the traditional PSO, and these constants were regulated through 2 alternative procedures, i.e. max min-based and cosine amplitude-based diversity-evaluating procedures. The 4 most commonly used benchmark functions were used to test the general optimization performances of the RDS-PSO algorithm with 3 different velocity updates, RDS-PSO without a regulating procedure, and the traditional PSO with linearly increasing/decreasing inertia weight. All PSO algorithms were also implemented in 4 modes, and their experimental results were compared. According to the experimental results, RDS-PSO 3 showed the best optimization performance

    Controller design for synchronization of an array of delayed neural networks using a controllable

    Get PDF
    This is the post-print version of the Article - Copyright @ 2011 ElsevierIn this paper, a controllable probabilistic particle swarm optimization (CPPSO) algorithm is introduced based on Bernoulli stochastic variables and a competitive penalized method. The CPPSO algorithm is proposed to solve optimization problems and is then applied to design the memoryless feedback controller, which is used in the synchronization of an array of delayed neural networks (DNNs). The learning strategies occur in a random way governed by Bernoulli stochastic variables. The expectations of Bernoulli stochastic variables are automatically updated by the search environment. The proposed method not only keeps the diversity of the swarm, but also maintains the rapid convergence of the CPPSO algorithm according to the competitive penalized mechanism. In addition, the convergence rate is improved because the inertia weight of each particle is automatically computed according to the feedback of fitness value. The efficiency of the proposed CPPSO algorithm is demonstrated by comparing it with some well-known PSO algorithms on benchmark test functions with and without rotations. In the end, the proposed CPPSO algorithm is used to design the controller for the synchronization of an array of continuous-time delayed neural networks.This research was partially supported by the National Natural Science Foundation of PR China (Grant No 60874113), the Research Fund for the Doctoral Program of Higher Education (Grant No 200802550007), the Key Creative Project of Shanghai Education Community (Grant No 09ZZ66), the Key Foundation Project of Shanghai(Grant No 09JC1400700), the Engineering and Physical Sciences Research Council EPSRC of the U.K. under Grant No. GR/S27658/01, an International Joint Project sponsored by the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    A comparison between the Pittsburgh and Michigan approaches for the binary PSO algorithm

    Get PDF
    IEEE Congress on Evolutionary Computation. Edimburgo, 5 september 2005This paper shows the performance of the binary PSO algorithm as a classification system. These systems are classified in two different perspectives: the Pittsburgh and the Michigan approaches. In order to implement the Michigan approach binary PSO algorithm, the standard PSO dynamic equations are modified, introducing a repulsive force to favor particle competition. A dynamic neighborhood, adapted to classification problems, is also defined. Both classifiers are tested using a reference set of problems, where both classifiers achieve better performance than many classification techniques. The Michigan PSO classifier shows clear advantages over the Pittsburgh one both in terms of success rate and speed. The Michigan PSO can also be generalized to the continuous version of the PSO

    Improved BPSO for optimal PMU placement

    Get PDF
    Optimal phasor measurement unit (PMU) placement involves the process of minimizing the number of PMU needed while ensuring entire power system network completely observable. This paper presents the improved binary particle swarm (IBPSO) method that converges faster and also manage to maximize the measurement redundancy compared to the existing BPSO method. This method is applied to IEEE-30 bus system for the case of considering zero-injection bus and its effectiveness is verified by the simulation results done by using MATLAB software

    Feedback learning particle swarm optimization

    Get PDF
    This is the author’s version of a work that was accepted for publication in Applied Soft Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published and is available at the link below - Copyright @ Elsevier 2011In this paper, a feedback learning particle swarm optimization algorithm with quadratic inertia weight (FLPSO-QIW) is developed to solve optimization problems. The proposed FLPSO-QIW consists of four steps. Firstly, the inertia weight is calculated by a designed quadratic function instead of conventional linearly decreasing function. Secondly, acceleration coefficients are determined not only by the generation number but also by the search environment described by each particle’s history best fitness information. Thirdly, the feedback fitness information of each particle is used to automatically design the learning probabilities. Fourthly, an elite stochastic learning (ELS) method is used to refine the solution. The FLPSO-QIW has been comprehensively evaluated on 18 unimodal, multimodal and composite benchmark functions with or without rotation. Compared with various state-of-the-art PSO algorithms, the performance of FLPSO-QIW is promising and competitive. The effects of parameter adaptation, parameter sensitivity and proposed mechanism are discussed in detail.This research was partially supported by the National Natural Science Foundation of PR China (Grant No 60874113), the Research Fund for the Doctoral Program of Higher Education (Grant No 200802550007), the Key Creative Project of Shanghai Education Community (Grant No 09ZZ66), the Key Foundation Project of Shanghai(Grant No 09JC1400700), the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany
    corecore