19,710 research outputs found

    Future Trends of Virtual, Augmented Reality, and Games for Health

    Get PDF
    Serious game is now a multi-billion dollar industry and is still growing steadily in many sectors. As a major subset of serious games, designing and developing Virtual Reality (VR), Augmented Reality (AR), and serious games or adopting off-the-shelf games to support medical education, rehabilitation, or promote health has become a promising frontier in the healthcare sector since 2004, because games technology is inexpensive, widely available, fun and entertaining for people of all ages, with various health conditions and different sensory, motor, and cognitive capabilities. In this chapter, we provide the reader an overview of the book with a perspective of future trends of VR, AR simulation and serious games for healthcare

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Education in the Wild: Contextual and Location-Based Mobile Learning in Action. A Report from the STELLAR Alpine Rendez-Vous Workshop Series

    Get PDF

    Visualyzart Project – The role in education

    Get PDF
    The VisualYzARt project intends to develop research on mobile platforms, web and social scenarios in order to bring augmented reality and natural interaction for the general public, aiming to study and validate the adequacy of YVision platform in various fields of activity such as digital arts, design, education, culture and leisure. The VisualYzARt project members analysed the components available in YVision platform and are defining new ones that allow the creation of applications to a chosen activity, effectively adding a new language to the domain YVision. In this paper we will present the role of the InstitutoPolitécnico de Santarém which falls into the field of education.VisualYzART is funded by QREN – Sistema de Incentivos à Investigação e Desenvolvimento Tecnológico (SI I&DT), Project n. º 23201 - VisualYzARt (from January 2013 to December 2014). Partners: YDreams Portugal; Instituto Politécnico de Santarém - Gabinete de e-Learning; Universidade de Coimbra - Centro de Informática e Sistemas; Instituto Politécnico de Leiria - Centro de Investigação em Informática e Comunicações; Universidade Católica do Porto - Centro de Investigação em Ciência e Tecnologia das Artes.info:eu-repo/semantics/publishedVersio

    Augmenting the field experience: a student-led comparison of techniques and technologies

    Get PDF
    In this study we report on our experiences of creating and running a student fieldtrip exercise which allowed students to compare a range of approaches to the design of technologies for augmenting landscape scenes. The main study site is around Keswick in the English Lake District, Cumbria, UK, an attractive upland environment popular with tourists and walkers. The aim of the exercise for the students was to assess the effectiveness of various forms of geographic information in augmenting real landscape scenes, as mediated through a range of techniques and technologies. These techniques were: computer-generated acetate overlays showing annotated wireframe views from certain key points; a custom-designed application running on a PDA; a mediascape running on the mScape software on a GPS-enabled mobile phone; Google Earth on a tablet PC; and a head-mounted in-field Virtual Reality system. Each group of students had all five techniques available to them, and were tasked with comparing them in the context of creating a visitor guide to the area centred on the field centre. Here we summarise their findings and reflect upon some of the broader research questions emerging from the project

    Using the Proteus virtual environment to train future IT professionals

    Get PDF
    Abstract. Based on literature review it was established that the use of augmented reality as an innovative technology of student training occurs in following directions: 3D image rendering; recognition and marking of real objects; interaction of a virtual object with a person in real time. The main advantages of using AR and VR in the educational process are highlighted: clarity, ability to simulate processes and phenomena, integration of educational disciplines, building an open education system, increasing motivation for learning, etc. It has been found that in the field of physical process modelling the Proteus Physics Laboratory is a popular example of augmented reality. Using the Proteus environment allows to visualize the functioning of the functional nodes of the computing system at the micro level. This is especially important for programming systems with limited resources, such as microcontrollers in the process of training future IT professionals. Experiment took place at Borys Grinchenko Kyiv University and Sumy State Pedagogical University named after A. S. Makarenko with students majoring in Computer Science (field of knowledge is Secondary Education (Informatics)). It was found that computer modelling has a positive effect on mastering the basics of microelectronics. The ways of further scientific researches for grounding, development and experimental verification of forms, methods and augmented reality, and can be used in the professional training of future IT specialists are outlined in the article
    corecore