104,260 research outputs found

    AnonyControl: Control Cloud Data Anonymously with Multi-Authority Attribute-Based Encryption

    Full text link
    Cloud computing is a revolutionary computing paradigm which enables flexible, on-demand and low-cost usage of computing resources. However, those advantages, ironically, are the causes of security and privacy problems, which emerge because the data owned by different users are stored in some cloud servers instead of under their own control. To deal with security problems, various schemes based on the Attribute- Based Encryption (ABE) have been proposed recently. However, the privacy problem of cloud computing is yet to be solved. This paper presents an anonymous privilege control scheme AnonyControl to address the user and data privacy problem in a cloud. By using multiple authorities in cloud computing system, our proposed scheme achieves anonymous cloud data access, finegrained privilege control, and more importantly, tolerance to up to (N -2) authority compromise. Our security and performance analysis show that AnonyControl is both secure and efficient for cloud computing environment.Comment: 9 pages, 6 figures, 3 tables, conference, IEEE INFOCOM 201

    Comparative Analysis Of Cloud Computing Security Issues

    Get PDF
    Almost all the organizations are seriously thinking to adopt the cloud computingservices, seeing its benefits in terms of cost, accessibility, availability, flexibility andhighly automated process of updation. Cloud Computing enhance the current capabilitiesdynamically without further investment. Cloud Computing is a band of resources, applicationsand services. In cloud computing customer’s access IT related services in terms of infrastructure platform and software without getting knowledge of underlying technologies. With the executionof cloud computing, organizations have strong concerns about the security of their data.Organizations are hesitating to take initiatives in the deployment of their businesses due to data security problem. This paper gives an overview of cloud computing and analysis of security issues in cloud computing

    Securely Launching Virtual Machines on Trustworthy Platforms in a Public Cloud

    Get PDF
    In this paper we consider the Infrastructure-as-a-Service (IaaS) cloud model which allows cloud users to run their own virtual machines (VMs) on available cloud computing resources. IaaS gives enterprises the possibility to outsource their process workloads with minimal effort and expense. However, one major problem with existing approaches of cloud leasing, is that the users can only get contractual guarantees regarding the integrity of the offered platforms. The fact that the IaaS user himself or herself cannot verify the provider promised cloud platform integrity, is a security risk which threatens to prevent the IaaS business in general. In this paper we address this issue and propose a novel secure VM launch protocol using Trusted Computing techniques. This protocol allows the cloud IaaS users to securely bind the VM to a trusted computer configuration such that the clear text VM only will run on a platform that has been booted into a trustworthy state. This capability builds user confidence and can serve as an important enabler for creating trust in public clouds. We evaluate the feasibility of our proposed protocol via a full scale system implementation and perform a system security analysis

    A New Distributed Intrusion Detection System Based on Multi-Agent System for Cloud Environment

    Get PDF
    Cloud computing, like any distributed computing system, is continually exposed to many threats and attacks of various origins. Thus, cloud security is now a very important concern for both providers and users. Intrusion detection systems (IDSs) are used to detect attacks in this environment. The goal of security administrators (for both customers and providers) is to prevent and detect attacks while avoiding disruption of the smooth operation of the cloud. Making IDSs efficient is not an easy task in a distributed environment such as the cloud. This problem remains open, and to our knowledge, there are no satisfactory solutions for the automated evaluation and analysis of cloud security. The features of the multi-agent system paradigm, such as adaptability, collaboration, and distribution, make it possible to handle this evolution of cloud computing in an efficient and controlled manner. As a result, multi-agent systems are well suited to the effective management of cloud security. In this paper, we propose an efficient, reliable and secure distributed IDS (DIDS) based on a multi-agent approach to identify and prevent new and complex malicious attacks in this environment. Moreover, some experiments were conducted to evaluate the performance of our model

    Intelligent Mobile Edge Computing Integrated with Blockchain Security Analysis for Millimetre-Wave Communication

    Get PDF
     With the increase in number of devices enabled the Internet of Things (IoT) communication with the centralized cloud computing model. With the implementation of the cloud computing model leads to increased Quality of Service (QoS). The cloud computing model provides the edge computing technologies for the real-time application to achieve reliability and security. Edge computing is considered the extension of the cloud computing technology involved in transfer of the sensitive information in the cloud edge to increase the network security. The real-time data transmission realizes the interaction with the high frequency to derive improved network security. However, with edge computing server security is considered as sensitive privacy information maintenance. The information generated from the IoT devices are separated based on stored edge servers based on the service location. Edge computing data is separated based in edge servers for the guaranteed data integrity for the data loss and storage. Blockchain technologies are subjected to different security problem for the data integrity through integrated blockchain technologies. This paper developed a Voted Blockchain Elliptical Curve Cryptography (VBECC) model for the millimetre wave application. The examination of the blockchain model is evaluated based on the edge computing architecture. The VBECC model develop an architectural model based Blockchain technology with the voting scheme for the millimetre application. The estimated voting scheme computes the edge computing technologies for the estimation of features through ECC model. The VBECC model computes the security model for the data transmission in the edge computing-based millimetre application. The experimental analysis stated that VBECC model uses the data security model ~8% increased performance than the conventional technique

    Tailoring the Cyber Security Framework: How to Overcome the Complexities of Secure Live Virtual Machine Migration in Cloud Computing

    Get PDF
    This paper proposes a novel secure live virtual machine migration framework by using a virtual trusted platform module instance to improve the integrity of the migration process from one virtual machine to another on the same platform. The proposed framework, called Kororā, is designed and developed on a public infrastructure-as-a-service cloud-computing environment and runs concurrently on the same hardware components (Input/Output, Central Processing Unit, Memory) and the same hypervisor (Xen); however, a combination of parameters needs to be evaluated before implementing Kororā. The implementation of Kororā is not practically feasible in traditional distributed computing environments. It requires fixed resources with high-performance capabilities, connected through a high-speed, reliable network. The following research objectives were determined to identify the integrity features of live virtual machine migration in the cloud system: To understand the security issues associated with cloud computing, virtual trusted platform modules, virtualization, live virtual machine migration, and hypervisors; To identify the requirements for the proposed framework, including those related to live VM migration among different hypervisors; To design and validate the model, processes, and architectural features of the proposed framework; To propose and implement an end-to-end security architectural blueprint for cloud environments, providing an integrated view of protection mechanisms, and then to validate the proposed framework to improve the integrity of live VM migration. This is followed by a comprehensive review of the evaluation system architecture and the proposed framework state machine. The overarching aim of this paper, therefore, is to present a detailed analysis of the cloud computing security problem, from the perspective of cloud architectures and the cloud service delivery models. Based on this analysis, this study derives a detailed specification of the cloud live virtual machine migration integrity problem and key features that should be covered by the proposed framewor

    Remote Data Integrity Checking in Cloud Computing

    Get PDF
    Cloud computing is an internet based computing which enables sharing of services. It is very challenging part to keep safely all required data that are needed in many applica f or user in cloud. Storing our data in cloud may not be fully trustworthy. Since client doesnt have copy of all stored data, he has to depend on Cloud Service Provider. This work studies the problem of ensuring the integrity and security of data storage in Cloud Computing. This paper, proposes an effective and flexible Batch Audit sche me with dynamic data support to reduce the computation overheads. To ensure the correctness of users data the task of allowing a third party auditor (TPA), on behalf of the cloud client, to verify the integrity of the data stored in the cloud. We consider symmetric encryption for effective utilization of outsourced cloud data under the model, it achieve the storage security in multi cloud data storage. The new scheme further supports secure and efficient dynamic operation sondata blocks, including data i nserti on, update,delete and replacement. Extensive securityand performance analysis shows that the proposed sche me is highlyef ficient and resilient again st By zantinef ailure, maliciousd a ta modification at tack, and even server colliding a ttacks
    corecore