2,321 research outputs found

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Mesmerizer: A Effective Tool for a Complete Peer-to-Peer Software Development Life-cycle

    Get PDF
    In this paper we present what are, in our experience, the best practices in Peer-To-Peer(P2P) application development and how we combined them in a middleware platform called Mesmerizer. We explain how simulation is an integral part of the development process and not just an assessment tool. We then present our component-based event-driven framework for P2P application development, which can be used to execute multiple instances of the same application in a strictly controlled manner over an emulated network layer for simulation/testing, or a single application in a concurrent environment for deployment purpose. We highlight modeling aspects that are of critical importance for designing and testing P2P applications, e.g. the emulation of Network Address Translation and bandwidth dynamics. We show how our simulator scales when emulating low-level bandwidth characteristics of thousands of concurrent peers while preserving a good degree of accuracy compared to a packet-level simulator

    CloudMedia: When cloud on demand meets video on demand

    Get PDF
    Internet-based cloud computing is a new computing paradigm aiming to provide agile and scalable resource access in a utility-like fashion. Other than being an ideal platform for computation-intensive tasks, clouds are believed to be also suitable to support large-scale applications with periods of flash crowds by providing elastic amounts of bandwidth and other resources on the fly. The fundamental question is how to configure the cloud utility to meet the highly dynamic demands of such applications at a modest cost. In this paper, we address this practical issue with solid theoretical analysis and efficient algorithm design using Video on Demand (VoD) as the example application. Having intensive bandwidth and storage demands in real time, VoD applications are purportedly ideal candidates to be supported on a cloud platform, where the on-demand resource supply of the cloud meets the dynamic demands of the VoD applications. We introduce a queueing network based model to characterize the viewing behaviors of users in a multichannel VoD application, and derive the server capacities needed to support smooth playback in the channels for two popular streaming models: client-server and P2P. We then propose a dynamic cloud resource provisioning algorithm which, using the derived capacities and instantaneous network statistics as inputs, can effectively support VoD streaming with low cloud utilization cost. Our analysis and algorithm design are verified and extensively evaluated using large-scale experiments under dynamic realistic settings on a home-built cloud platform. © 2011 IEEE.published_or_final_versionThe 31st International Conference on Distributed Computing Systems (ICDCS 2011), Minneapolis, MN., 20-24 June 2011. In Proceedings of 31st ICDCS, 2011, p. 268-27
    corecore