6,380 research outputs found

    Performance assessment of urban precinct design: a scoping study

    Get PDF
    Executive Summary: Significant advances have been made over the past decade in the development of scientifically and industry accepted tools for the performance assessment of buildings in terms of energy, carbon, water, indoor environment quality etc. For resilient, sustainable low carbon urban development to be realised in the 21st century, however, will require several radical transitions in design performance beyond the scale of individual buildings. One of these involves the creation and application of leading edge tools (not widely available to built environment professions and practitioners) capable of being applied to an assessment of performance across all stages of development at a precinct scale (neighbourhood, community and district) in either greenfield, brownfield or greyfield settings. A core aspect here is the development of a new way of modelling precincts, referred to as Precinct Information Modelling (PIM) that provides for transparent sharing and linking of precinct object information across the development life cycle together with consistent, accurate and reliable access to reference data, including that associated with the urban context of the precinct. Neighbourhoods are the ‘building blocks’ of our cities and represent the scale at which urban design needs to make its contribution to city performance: as productive, liveable, environmentally sustainable and socially inclusive places (COAG 2009). Neighbourhood design constitutes a major area for innovation as part of an urban design protocol established by the federal government (Department of Infrastructure and Transport 2011, see Figure 1). The ability to efficiently and effectively assess urban design performance at a neighbourhood level is in its infancy. This study was undertaken by Swinburne University of Technology, University of New South Wales, CSIRO and buildingSMART Australasia on behalf of the CRC for Low Carbon Living

    Perspectives on subnational carbon and climate footprints: A case study of Southampton, UK

    Get PDF
    Sub-national governments are increasingly interested in local-level climate change management. Carbon- (CO2 and CH4) and climate-footprints—(Kyoto Basket GHGs) (effectively single impact category LCA metrics, for global warming potential) provide an opportunity to develop models to facilitate effective mitigation. Three approaches are available for the footprinting of sub-national communities. Territorial-based approaches, which focus on production emissions within the geo-political boundaries, are useful for highlighting local emission sources but do not reflect the transboundary nature of sub-national community infrastructures. Transboundary approaches, which extend territorial footprints through the inclusion of key cross boundary flows of materials and energy, are more representative of community structures and processes but there are concerns regarding comparability between studies. The third option, consumption-based, considers global GHG emissions that result from final consumption (households, governments, and investment). Using a case study of Southampton, UK, this chapter develops the data and methods required for a sub-national territorial, transboundary, and consumption-based carbon and climate footprints. The results and implication of each footprinting perspective are discussed in the context of emerging international standards. The study clearly shows that the carbon footprint (CO2 and CH4 only) offers a low-cost, low-data, universal metric of anthropogenic GHG emission and subsequent management

    Analysis of Technological Portfolios for CO2 stabilizations and Effects of Technological Changes

    Get PDF
    In this study, cost-effective technological options to stabilize CO2 concentrations at 550, 500, and 450 ppmv are evaluated using a world energy systems model of linear programming with a high regional resolution. This model treats technological change endogenously for wind power, photovoltaics, and fuel-cell vehicles, which are technologies of mass production and are considered to follow the “learning by doing” process. Technological changes induced by climate policies are evaluated by maintaining the technological changes at the levels of the base case wherein there is no climate policy. The results achieved through model analyses include 1) cost-effective technological portfolios, including carbon capture and storage, marginal CO2 reduction costs, and increases in energy system cost for three levels of stabilization and 2) the effect of the induced technological change on the above mentioned factors. A sensitivity analysis is conducted with respect to the learning rate.Energy systems model, Global warming, Technological portfolios, Technological changes

    Construction of abatement cost curves: The case of F-gases

    Get PDF
    Most of scientific research on Greenhouse Gases (GHG) focuses on CO2 emissions. But non-CO2 gases (mainly F-gases in the form of HFCs, PFCs, and SF6) are more potent at trapping heat within the atmosphere. Currently, F-gases constitute a small proportion of GHG emissions but they are extremely high Global Warming Potential gases. At the same time, they are expected to increase massively due to the expansion of some emitting industries, while the atmospheric lifetimes of PFCs and SF6 are very long. This study analyzes the economic and technical assumptions in abatement cost calculation in the case of the F-gases. The important factors for differences among countries in average mitigation costs are discussed and the least cost curve of F-gases control for the EU-27 and for the year 2020 is derived. It seems that it is more cost-effective to start abating SF6 first, and then moving to PFCs and then applying control methods to HFCs.F-gases; control methods; emissions; GWP

    Modeling of Transition from Natural Gas to Hybrid Renewable Energy Heating System

    Get PDF
    Abstract Global energy demand is increased due to industrial development. Currently, fossil fuels, with more than 85%, are the most prominent source of energy in Iran, and their consumption has been raised, but it has destructive impacts on the environment and human health. This study aims to model and techno-economically assess renewable energy heating for replacing natural gas in Qazvin city.  The natural gas domestic demand was quantified, followed by consumption forecasting for 15 years. Six different scenarios were investigated to assess renewables’ potential to meet the city heat demand for the next 15years. The study uncovers that the best practice scenario can reduce natural gas consumption and increase renewable energies share. Finally, the proposed scenario was analyzed economically and environmentally. Results revealed that the return on investment would occur in 3 years by exporting the saved natural gas. Also, Iran can reduce CO2 emissions by about 1 million tons by the year 2029

    Global carbon mechanisms: emerging lessons and implications

    Get PDF
    The global carbon mechanisms have succeeded in channelling billions of Euros towards low-carbon investments in developing countries, but cannot deliver what is needed in the future without support including reforms and involvement of North America. The publication shows that the Clean Development Mechanism itself has triggered more than 4000 emission-reducing projects in developing countries and is likely to save up to 2 billion tonnes of emissions reductions by 2012. Other Mechanisms under the Kyoto Protocol, including emerging Green Investment Schemes, show great promise. But many of the gains are at peril, warns the publication, unless governments act to restore balance in the markets and learn the emerging lessons. The publication identifies and analyses three fundamental problems that must be tackled. An excess of supply over demand will mean low prices in the market without government action There must be reforms to improve the efficiency and environmental performance of the existing mechanisms The Global Carbon Mechanisms are and will continue to be a central pillar in the global response to climate change to 2020, but are not on their own sufficient. They need to be complemented by other action to support the required cuts in carbon emission

    Secure and Sustainable Energy System

    Get PDF
    This special issue aims to contribute to the climate actions which called for the need to address Greenhouse Gas (GHG) emissions, keeping global warming to well below 2°C through various means, including accelerating renewables, clean fuels, and clean technologies into the entire energy system. As long as fossil fuels (coal, gas and oil) are still used in the foreseeable future, it is vital to ensure that these fossil fuels are used cleanly through abated technologies. Financing the clean and energy transition technologies is vital to ensure the smooth transition towards net zero emission by 2050 or beyond. The lack of long‐term financing, the low rate of return, the existence of various risks, and the lack of capacity of market players are major challenges to developing sustainable energy systems.This special collected 17 high-quality empirical studies that assess the challenges for developing secure and sustainable energy systems and provide practical policy recommendations. The editors of this special issue wish to thank the Economic Research Institute for ASEAN and East Asia (ERIA) for funding several papers that were published in this special issue

    Appraising Agricultural Greenhouse Gas Mitigation Potentials: Effects of Alternative Assumptions

    Get PDF
    Soil carbon sequestration, Sink dynamics, Mathematical programming, Land use, Optimization, Agriculture, Forestry, Greenhouse gas mitigation

    SUSTAINABILITY ASSESSMENT OF LARGE-SCALE CARBON CAPTURE AND SEQUESTRATION DEPLOYMENT OUTSIDE THE SYSTEM BOUNDARIES - OPPORTUNITIES AND CHALLENGES

    Get PDF
    Most power generation in the United States is derived from the combustion of fossil fuels, primarily coal and natural gas. As a result, greenhouse gases (GHGs) are generated, and they act to trap radiant heat from the Earth. When GHGs are discussed, attention is usually concentrated on carbon dioxide (CO2) because it is believed to be the most manageable anthropogenic GHG. Therefore, introducing new technologies, primarily those which deal with CO2 capture and storage, is seen as a potential option for managing GHGs. Oil and gas reservoirs, saline formations, and un-mineable coal beds are examples of underground CO2 storage sites. In the United States, it has been estimated that these sites together have the potential capacity to store the country’s CO2 emissions for the next 500 years. For this reason, carbon capture and sequestration (CCS) has become a very attractive approach by several industries, including the coal-fired power industry, to reduce their GHG emissions. However, the implementation of CCS on a broad scale will require an enormous input of resources and energy, which will be used during the CCS production, installation, and operation phases. The eventual result of this implementation will be an increased demand for fuel, which in turn will lead to furthe
    corecore