1,747 research outputs found

    Fuzzy Controllers

    Get PDF
    Trying to meet the requirements in the field, present book treats different fuzzy control architectures both in terms of the theoretical design and in terms of comparative validation studies in various applications, numerically simulated or experimentally developed. Through the subject matter and through the inter and multidisciplinary content, this book is addressed mainly to the researchers, doctoral students and students interested in developing new applications of intelligent control, but also to the people who want to become familiar with the control concepts based on fuzzy techniques. Bibliographic resources used to perform the work includes books and articles of present interest in the field, published in prestigious journals and publishing houses, and websites dedicated to various applications of fuzzy control. Its structure and the presented studies include the book in the category of those who make a direct connection between theoretical developments and practical applications, thereby constituting a real support for the specialists in artificial intelligence, modelling and control fields

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems

    Fuzzy Decision Making and Soft Computing Applications

    Get PDF
    This Special Issue collects original research articles discussing cutting-edge work as well as perspectives on future directions in the whole range of theoretical and practical aspects in these research areas: i) Theory of fuzzy systems and soft computing; ii) Learning procedures; iii) Decision-making applications employing fuzzy logic and soft computing

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    Hybrid Intelligent Optimization Methods for Engineering Problems

    Get PDF
    The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Development of FPGA based Standalone Tunable Fuzzy Logic Controllers

    Get PDF
    Soft computing techniques differ from conventional (hard) computing, in that unlike hard computing, it is tolerant of imprecision, uncertainty, partial truth, and approximation. In effect, the role model for soft computing is the human mind and its ability to address day-to-day problems. The principal constituents of Soft Computing (SC) are Fuzzy Logic (FL), Evolutionary Computation (EC), Machine Learning (ML) and Artificial Neural Networks (ANNs). This thesis presents a generic hardware architecture for type-I and type-II standalone tunable Fuzzy Logic Controllers (FLCs) in Field Programmable Gate Array (FPGA). The designed FLC system can be remotely configured or tuned according to expert operated knowledge and deployed in different applications to replace traditional Proportional Integral Derivative (PID) controllers. This re-configurability is added as a feature to existing FLCs in literature. The FLC parameters which are needed for tuning purpose are mainly input range, output range, number of inputs, number of outputs, the parameters of the membership functions like slope and center points, and an If-Else rule base for the fuzzy inference process. Online tuning enables users to change these FLC parameters in real-time and eliminate repeated hardware programming whenever there is a need to change. Realization of these systems in real-time is difficult as the computational complexity increases exponentially with an increase in the number of inputs. Hence, the challenge lies in reducing the rule base significantly such that the inference time and the throughput time is perceivable for real-time applications. To achieve these objectives, Modified Rule Active 2 Overlap Membership Function (MRA2-OMF), Modified Rule Active 3 Overlap Membership Function (MRA3-OMF), Modified Rule Active 4 Overlap Membership Function (MRA4-OMF), and Genetic Algorithm (GA) base rule optimization methods are proposed and implemented. These methods reduce the effective rules without compromising system accuracy and improve the cycle time in terms of Fuzzy Logic Inferences Per Second (FLIPS). In the proposed system architecture, the FLC is segmented into three independent modules, fuzzifier, inference engine with rule base, and defuzzifier. Fuzzy systems employ fuzzifier to convert the real world crisp input into the fuzzy output. In type 2 fuzzy systems there are two fuzzifications happen simultaneously from upper and lower membership functions (UMF and LMF) with subtractions and divisions. Non-restoring, very high radix, and newton raphson approximation are most widely used division algorithms in hardware implementations. However, these prevalent methods have a cost of more latency. In order to overcome this problem, a successive approximation division algorithm based type 2 fuzzifier is introduced. It has been observed that successive approximation based fuzzifier computation is faster than the other type 2 fuzzifier. A hardware-software co-design is established on Virtex 5 LX110T FPGA board. The MATLAB Graphical User Interface (GUI) acquires the fuzzy (type 1 or type 2) parameters from users and a Universal Asynchronous Receiver/Transmitter (UART) is dedicated to data communication between the hardware and the fuzzy toolbox. This GUI is provided to initiate control, input, rule transfer, and then to observe the crisp output on the computer. A proposed method which can support canonical fuzzy IF-THEN rules, which includes special cases of the fuzzy rule base is included in Digital Fuzzy Logic Controller (DFLC) architecture. For this purpose, a mealy state machine is incorporated into the design. The proposed FLCs are implemented on Xilinx Virtex-5 LX110T. DFLC peripheral integration with Micro-Blaze (MB) processor through Processor Logic Bus (PLB) is established for Intellectual Property (IP) core validation. The performance of the proposed systems are compared to Fuzzy Toolbox of MATLAB. Analysis of these designs is carried out by using Hardware-In-Loop (HIL) test to control various plant models in MATLAB/Simulink environments
    corecore