560 research outputs found

    Learning to Prove Safety over Parameterised Concurrent Systems (Full Version)

    Full text link
    We revisit the classic problem of proving safety over parameterised concurrent systems, i.e., an infinite family of finite-state concurrent systems that are represented by some finite (symbolic) means. An example of such an infinite family is a dining philosopher protocol with any number n of processes (n being the parameter that defines the infinite family). Regular model checking is a well-known generic framework for modelling parameterised concurrent systems, where an infinite set of configurations (resp. transitions) is represented by a regular set (resp. regular transducer). Although verifying safety properties in the regular model checking framework is undecidable in general, many sophisticated semi-algorithms have been developed in the past fifteen years that can successfully prove safety in many practical instances. In this paper, we propose a simple solution to synthesise regular inductive invariants that makes use of Angluin's classic L* algorithm (and its variants). We provide a termination guarantee when the set of configurations reachable from a given set of initial configurations is regular. We have tested L* algorithm on standard (as well as new) examples in regular model checking including the dining philosopher protocol, the dining cryptographer protocol, and several mutual exclusion protocols (e.g. Bakery, Burns, Szymanski, and German). Our experiments show that, despite the simplicity of our solution, it can perform at least as well as existing semi-algorithms.Comment: Full version of FMCAD'17 pape

    Learning Description Logic Ontologies: Five Approaches. Where Do They Stand?

    Get PDF
    Abstract The quest for acquiring a formal representation of the knowledge of a domain of interest has attracted researchers with various backgrounds into a diverse field called ontology learning. We highlight classical machine learning and data mining approaches that have been proposed for (semi-)automating the creation of description logic (DL) ontologies. These are based on association rule mining, formal concept analysis, inductive logic programming, computational learning theory, and neural networks. We provide an overview of each approach and how it has been adapted for dealing with DL ontologies. Finally, we discuss the benefits and limitations of each of them for learning DL ontologies

    On the Learnability of Shuffle Ideals

    Get PDF
    PAC learning of unrestricted regular languages is long known to be a difficult problem. The class of shuffle ideals is a very restricted subclass of regular languages, where the shuffle ideal generated by a string u is the collection of all strings containing u as a subsequence. This fundamental language family is of theoretical interest in its own right and provides the building blocks for other important language families. Despite its apparent simplicity, the class of shuffle ideals appears quite difficult to learn. In particular, just as for unrestricted regular languages, the class is not properly PAC learnable in polynomial time if RP 6= NP, and PAC learning the class improperly in polynomial time would imply polynomial time algorithms for certain fundamental problems in cryptography. In the positive direction, we give an efficient algorithm for properly learning shuffle ideals in the statistical query (and therefore also PAC) model under the uniform distribution.T-Party Projec

    A Formal Framework for Speedup Learning from Problems and Solutions

    Full text link
    Speedup learning seeks to improve the computational efficiency of problem solving with experience. In this paper, we develop a formal framework for learning efficient problem solving from random problems and their solutions. We apply this framework to two different representations of learned knowledge, namely control rules and macro-operators, and prove theorems that identify sufficient conditions for learning in each representation. Our proofs are constructive in that they are accompanied with learning algorithms. Our framework captures both empirical and explanation-based speedup learning in a unified fashion. We illustrate our framework with implementations in two domains: symbolic integration and Eight Puzzle. This work integrates many strands of experimental and theoretical work in machine learning, including empirical learning of control rules, macro-operator learning, Explanation-Based Learning (EBL), and Probably Approximately Correct (PAC) Learning.Comment: See http://www.jair.org/ for any accompanying file

    Pac-Learning Recursive Logic Programs: Efficient Algorithms

    Full text link
    We present algorithms that learn certain classes of function-free recursive logic programs in polynomial time from equivalence queries. In particular, we show that a single k-ary recursive constant-depth determinate clause is learnable. Two-clause programs consisting of one learnable recursive clause and one constant-depth determinate non-recursive clause are also learnable, if an additional ``basecase'' oracle is assumed. These results immediately imply the pac-learnability of these classes. Although these classes of learnable recursive programs are very constrained, it is shown in a companion paper that they are maximally general, in that generalizing either class in any natural way leads to a computationally difficult learning problem. Thus, taken together with its companion paper, this paper establishes a boundary of efficient learnability for recursive logic programs.Comment: See http://www.jair.org/ for any accompanying file

    Regular Inference over Recurrent Neural Networks as a Method for Black Box Explainability

    Get PDF
    Incluye bibliografía.El presente Desarrollo de Tesis explora el problema general de explicar el comportamiento de una red neuronal recurrente (RNN por sus siglas en inglés). El objetivo es construir una representación que mejore el entendimiento humano de las RNN como clasificadores de secuencias, con el propósito de proveer entendimiento sobre el proceso de decisión detrås de la clasificación de una secuencia como positiva o negativa, y a su vez, habilitar un mayor anålisis sobre las mismas como por ejemplo la verificación formal basada en autómatas. Se propone en concreto, un algoritmo de aprendizaje automåtico activo para la construcción de un autómata finito determinístico que es aproximadamente correcto respecto a una red neuronal artificial

    : Méthodes d'Inférence Symbolique pour les Bases de Données

    Get PDF
    This dissertation is a summary of a line of research, that I wasactively involved in, on learning in databases from examples. Thisresearch focused on traditional as well as novel database models andlanguages for querying, transforming, and describing the schema of adatabase. In case of schemas our contributions involve proposing anoriginal languages for the emerging data models of Unordered XML andRDF. We have studied learning from examples of schemas for UnorderedXML, schemas for RDF, twig queries for XML, join queries forrelational databases, and XML transformations defined with a novelmodel of tree-to-word transducers.Investigating learnability of the proposed languages required us toexamine closely a number of their fundamental properties, often ofindependent interest, including normal forms, minimization,containment and equivalence, consistency of a set of examples, andfinite characterizability. Good understanding of these propertiesallowed us to devise learning algorithms that explore a possibly largesearch space with the help of a diligently designed set ofgeneralization operations in search of an appropriate solution.Learning (or inference) is a problem that has two parameters: theprecise class of languages we wish to infer and the type of input thatthe user can provide. We focused on the setting where the user inputconsists of positive examples i.e., elements that belong to the goallanguage, and negative examples i.e., elements that do not belong tothe goal language. In general using both negative and positiveexamples allows to learn richer classes of goal languages than usingpositive examples alone. However, using negative examples is oftendifficult because together with positive examples they may cause thesearch space to take a very complex shape and its exploration may turnout to be computationally challenging.Ce mĂ©moire est une courte prĂ©sentation d’une direction de recherche, Ă  laquelle j’ai activementparticipĂ©, sur l’apprentissage pour les bases de donnĂ©es Ă  partir d’exemples. Cette recherches’est concentrĂ©e sur les modĂšles et les langages, aussi bien traditionnels qu’émergents, pourl’interrogation, la transformation et la description du schĂ©ma d’une base de donnĂ©es. Concernantles schĂ©mas, nos contributions consistent en plusieurs langages de schĂ©mas pour les nouveaumodĂšles de bases de donnĂ©es que sont XML non-ordonnĂ© et RDF. Nous avons ainsi Ă©tudiĂ©l’apprentissage Ă  partir d’exemples des schĂ©mas pour XML non-ordonnĂ©, des schĂ©mas pour RDF,des requĂȘtes twig pour XML, les requĂȘtes de jointure pour bases de donnĂ©es relationnelles et lestransformations XML dĂ©finies par un nouveau modĂšle de transducteurs arbre-Ă -mot.Pour explorer si les langages proposĂ©s peuvent ĂȘtre appris, nous avons Ă©tĂ© obligĂ©s d’examinerde prĂšs un certain nombre de leurs propriĂ©tĂ©s fondamentales, souvent souvent intĂ©ressantespar elles-mĂȘmes, y compris les formes normales, la minimisation, l’inclusion et l’équivalence, lacohĂ©rence d’un ensemble d’exemples et la caractĂ©risation finie. Une bonne comprĂ©hension de cespropriĂ©tĂ©s nous a permis de concevoir des algorithmes d’apprentissage qui explorent un espace derecherche potentiellement trĂšs vaste grĂące Ă  un ensemble d’opĂ©rations de gĂ©nĂ©ralisation adaptĂ© Ă la recherche d’une solution appropriĂ©e.L’apprentissage (ou l’infĂ©rence) est un problĂšme Ă  deux paramĂštres : la classe prĂ©cise delangage que nous souhaitons infĂ©rer et le type d’informations que l’utilisateur peut fournir. Nousnous sommes placĂ©s dans le cas oĂč l’utilisateur fournit des exemples positifs, c’est-Ă -dire desĂ©lĂ©ments qui appartiennent au langage cible, ainsi que des exemples nĂ©gatifs, c’est-Ă -dire qui n’enfont pas partie. En gĂ©nĂ©ral l’utilisation Ă  la fois d’exemples positifs et nĂ©gatifs permet d’apprendredes classes de langages plus riches que l’utilisation uniquement d’exemples positifs. Toutefois,l’utilisation des exemples nĂ©gatifs est souvent difficile parce que les exemples positifs et nĂ©gatifspeuvent rendre la forme de l’espace de recherche trĂšs complexe, et par consĂ©quent, son explorationinfaisable
    • 

    corecore