5,390 research outputs found

    Improved Analysis of Deterministic Load-Balancing Schemes

    Full text link
    We consider the problem of deterministic load balancing of tokens in the discrete model. A set of nn processors is connected into a dd-regular undirected network. In every time step, each processor exchanges some of its tokens with each of its neighbors in the network. The goal is to minimize the discrepancy between the number of tokens on the most-loaded and the least-loaded processor as quickly as possible. Rabani et al. (1998) present a general technique for the analysis of a wide class of discrete load balancing algorithms. Their approach is to characterize the deviation between the actual loads of a discrete balancing algorithm with the distribution generated by a related Markov chain. The Markov chain can also be regarded as the underlying model of a continuous diffusion algorithm. Rabani et al. showed that after time T=O(log(Kn)/μ)T = O(\log (Kn)/\mu), any algorithm of their class achieves a discrepancy of O(dlogn/μ)O(d\log n/\mu), where μ\mu is the spectral gap of the transition matrix of the graph, and KK is the initial load discrepancy in the system. In this work we identify some natural additional conditions on deterministic balancing algorithms, resulting in a class of algorithms reaching a smaller discrepancy. This class contains well-known algorithms, eg., the Rotor-Router. Specifically, we introduce the notion of cumulatively fair load-balancing algorithms where in any interval of consecutive time steps, the total number of tokens sent out over an edge by a node is the same (up to constants) for all adjacent edges. We prove that algorithms which are cumulatively fair and where every node retains a sufficient part of its load in each step, achieve a discrepancy of O(min{dlogn/μ,dn})O(\min\{d\sqrt{\log n/\mu},d\sqrt{n}\}) in time O(T)O(T). We also show that in general neither of these assumptions may be omitted without increasing discrepancy. We then show by a combinatorial potential reduction argument that any cumulatively fair scheme satisfying some additional assumptions achieves a discrepancy of O(d)O(d) almost as quickly as the continuous diffusion process. This positive result applies to some of the simplest and most natural discrete load balancing schemes.Comment: minor corrections; updated literature overvie

    A Simulation Based Analysis of an Multi Objective Diffusive Load Balancing Algorithm

    Get PDF
    In this paper, we presented a further development of our research on developing an optimal software-hardware mapping framework. We used the Petri Net model of the complete hardware and software High Performance Computing (HPC) system running a Computational Fluid Dynamics (CFD) application, to simulate the behaviour of the proposed diffusive two level multi-objective load-balancing algorithm. We developed an meta-heuristic algorithm for generating an approximation of the Pareto-optimal set to be used as reference. The simulations showed the advantages of this algorithm over other diffusive algorithms: reduced computational and communication overhead and robustness due to low dependence on uncertain data. The algorithm also had the capacity to handle unpredictable events as a load increase due to domain refinement or loss of a computation resource due to malfunction

    Pressure Fluctuations in Natural Gas Networks caused by Gas-Electric Coupling

    Full text link
    The development of hydraulic fracturing technology has dramatically increased the supply and lowered the cost of natural gas in the United States, driving an expansion of natural gas-fired generation capacity in several electrical inter-connections. Gas-fired generators have the capability to ramp quickly and are often utilized by grid operators to balance intermittency caused by wind generation. The time-varying output of these generators results in time-varying natural gas consumption rates that impact the pressure and line-pack of the gas network. As gas system operators assume nearly constant gas consumption when estimating pipeline transfer capacity and for planning operations, such fluctuations are a source of risk to their system. Here, we develop a new method to assess this risk. We consider a model of gas networks with consumption modeled through two components: forecasted consumption and small spatio-temporarily varying consumption due to the gas-fired generators being used to balance wind. While the forecasted consumption is globally balanced over longer time scales, the fluctuating consumption causes pressure fluctuations in the gas system to grow diffusively in time with a diffusion rate sensitive to the steady but spatially-inhomogeneous forecasted distribution of mass flow. To motivate our approach, we analyze the effect of fluctuating gas consumption on a model of the Transco gas pipeline that extends from the Gulf of Mexico to the Northeast of the United States.Comment: 10 pages, 7 figure

    Parallelization of a relaxation scheme modelling the bedload transport of sediments in shallow water flow

    Get PDF
    In this work we are interested in numerical simulations for bedload erosion processes. We present a relaxation solver that we apply to moving dunes test cases in one and two dimensions. In particular we retrieve the so-called anti-dune process that is well described in the experiments. In order to be able to run 2D test cases with reasonable CPU time, we also describe and apply a parallelization procedure by using domain decomposition based on the classical MPI library.Comment: 19 page
    corecore