293,885 research outputs found

    Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging

    Get PDF
    We present the Twente Optical Perfusion Camera (TOPCam), a novel laser Doppler Perfusion Imager based on CMOS technology. The tissue under investigation is illuminated and the resulting dynamic speckle pattern is recorded with a high speed CMOS camera. Based on an overall analysis of the signal-to-noise ratio of CMOS cameras, we have selected the camera which best fits our requirements. We applied a pixel-by-pixel noise correction to minimize the influence of noise in the perfusion images. We can achieve a frame rate of 0.2 fps for a perfusion image of 128×128 pixels (imaged tissue area of 7×7 cm2) if the data is analyzed online. If the analysis of the data is performed offline, we can achieve a frame rate of 26 fps for a duration of 3.9 seconds. By reducing the imaging size to 128×16 pixels, this frame rate can be achieved for up to half a minute. We show the fast imaging capabilities of the system in order of increasing perfusion frame rate. First the increase of skin perfusion after application of capsicum cream, and the perfusion during an occlusion-reperfusion procedure at the fastest frame rate allowed with online analysis is shown. With the highest frame rate allowed with offline analysis, the skin perfusion revealing the heart beat and the perfusion during an occlusion-reperfusion procedure is presented. Hence we have achieved video rate laser Doppler perfusion imaging

    A filter spectrometer concept for facsimile cameras

    Get PDF
    A concept which utilizes interference filters and photodetector arrays to integrate spectrometry with the basic imagery function of a facsimile camera is described and analyzed. The analysis considers spectral resolution, instantaneous field of view, spectral range, and signal-to-noise ratio. Specific performance predictions for the Martian environment, the Viking facsimile camera design parameters, and a signal-to-noise ratio for each spectral band equal to or greater than 256 indicate the feasibility of obtaining a spectral resolution of 0.01 micrometers with an instantaneous field of view of about 0.1 deg in the 0.425 micrometers to 1.025 micrometers range using silicon photodetectors. A spectral resolution of 0.05 micrometers with an instantaneous field of view of about 0.6 deg in the 1.0 to 2.7 micrometers range using lead sulfide photodetectors is also feasible

    Experimental Investigation of Photogrammetric Surface Analysis of Heat Shield Materials during Plasma Wind Tunnel Testing

    Get PDF
    The paper presents first results of an experimental analysis of surface recession using advanced photogrammetric tools. Based on image pairs acquired with two DSLR cameras, classical photogrammetry has been tried, but pixelwise image analysis with corresponding matching algorithms show much better results ans higher stability to image noise and ra- diation and re ection issues. A combination of open source tools for the analysis of camera positions and focal points, pixel matching analysis, and pixel cloud comparing, allows the recession to be measured with very high local resolution of 20 �m of a 2D surface. The ap- proach is analysed within this study with respect to window disturbance and experimental setup constraints. A first plasma wind tunnel experiment shows the applicability and an analysis of a central spot is comparable to laser recession measurements

    Intermittent noise sampling and control strategies in the hospital environment

    Get PDF
    Noise in the hospital environment can have negative effects on both patients and hospital staff. Unwanted noise can be disturbing and often annoying thus, interfering with patients\u27 sleep and obstructing work performance of the hospital staff. A research study was conducted in the hospital unit to identify and develop methods of intervention for intermittent noise and their source. Routine staff work activity generated noise levels above EPA hospital noise recommendations. A sound level meter and video camera was used to capture noise between the work-shifts. The video camera captured digital readings generated by the sound level meter which, helped identify high intermittent noise and approximate hour it occurred within that day. Statistical analysis shows that noise levels varied among different days of the week. An analysis of variance and a multiple range test was performed and results indicated that there were different noise levels among the sampled days. Routine staff work activity and conversation among other staff members are the major cause of noise peaks. A personal interview with one staff member briefly discussed the main source of hospital noise to be interaction among other staff members in addition to daily use of hospital equipment and handling other hospital supplies. A possible intervention to noise control in the hospital unit is staff awareness and education. In addition, modifying an existing equipment or purchasing new equipment with noise specification options will help decrease and/or eliminate noise

    Optimizing the use of detector arrays for measuring intensity correlations of photon pairs

    Get PDF
    Intensity correlation measurements form the basis of many experiments based on spontaneous parametric down-conversion. In the most common situation, two single-photon avalanche diodes and coincidence electronics are used in the detection of the photon pairs, and the coincidence count distributions are measured by making use of some scanning procedure. Here we analyze the measurement of intensity correlations using multielement detector arrays. By considering the detector parameters such as the detection and noise probabilities, we found that the mean number of detected photons that maximizes the visibility of the two-photon correlations is approximately equal to the mean number of noise events in the detector array. We provide expressions predicting the strength of the measured intensity correlations as a function of the detector parameters and on the mean number of detected photons. We experimentally test our predictions by measuring far-field intensity correlations of spontaneous parametric down-conversion with an electron multiplying charge-coupled device camera, finding excellent agreement with the theoretical analysis

    Implementation and evaluation of simultaneous video-electroencephalography and functional magnetic resonance imaging

    Get PDF
    The objective of this study was to demonstrate that the addition of simultaneous and synchronised video to electroencephalography (EEG)-correlated functional magnetic resonance imaging (fMRI) could increase recorded information without data quality reduction. We investigated the effect of placing EEG, video equipment and their required power supplies inside the scanner room, on EEG, video and MRI data quality, and evaluated video-EEG-fMRI by modelling a hand motor task. Gradient-echo, echo-planner images (EPI) were acquired on a 3-T MRI scanner at variable camera positions in a test object [with and without radiofrequency (RF) excitation], and human subjects. EEG was recorded using a commercial MR-compatible 64-channel cap and amplifiers. Video recording was performed using a two-camera custom-made system with EEG synchronization. An in-house script was used to calculate signal to fluctuation noise ratio (SFNR) from EPI in test object with variable camera positions and in human subjects with and without concurrent video recording. Five subjects were investigated with video-EEG-fMRI while performing hand motor task. The fMRI time series data was analysed using statistical parametric mapping, by building block design general linear models which were paradigm prescribed and video based. Introduction of the cameras did not alter the SFNR significantly, nor did it show any signs of spike noise during RF off conditions. Video and EEG quality also did not show any significant artefact. The Statistical Parametric Mapping{T} maps from video based design revealed additional blood oxygen level-dependent responses in the expected locations for non-compliant subjects compared to the paradigm prescribed design. We conclude that video-EEG-fMRI set up can be implemented without affecting the data quality significantly and may provide valuable information on behaviour to enhance the analysis of fMRI data

    A star camera aspect system suitable for use in balloon experiments

    Get PDF
    A balloon-borne experiment containing a star camera aspect system was designed, built, and flown. This system was designed to provide offset corrections to the magnetometer and inclinometer readings used to control an azimuth and elevation pointed experiment. The camera is controlled by a microprocessor, including commendable exposure and noise rejection threshold, as well as formatting the data for telemetry to the ground. As a background program, the microprocessor runs the aspect program to analyze a fraction of the pictures taken so that aspect information and offset corrections are available to the experiment in near real time. The analysis consists of pattern recognition of the star field with a star catalog in ROM memory and a least squares calculation. The performance of this system in ground based tests is described. It is part of the NASA/GSFC High Energy Gamma-Ray Balloon Instrument (2)

    Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy

    Full text link
    Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15 μ\mum has been achieved, which is equivalent to an UCN energy resolution below 2 pico-electron-volts through the relation δE=m0gδx\delta E = m_0g \delta x. Here, the symbols δE\delta E, δx\delta x, m0m_0 and gg are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. This method allows different types of UCN spectroscopy and other applications.Comment: 12 figures, 28 pages, accepted for publication in NIM
    • …
    corecore