9,622 research outputs found

    Biomechanics

    Get PDF
    Biomechanics is a vast discipline within the field of Biomedical Engineering. It explores the underlying mechanics of how biological and physiological systems move. It encompasses important clinical applications to address questions related to medicine using engineering mechanics principles. Biomechanics includes interdisciplinary concepts from engineers, physicians, therapists, biologists, physicists, and mathematicians. Through their collaborative efforts, biomechanics research is ever changing and expanding, explaining new mechanisms and principles for dynamic human systems. Biomechanics is used to describe how the human body moves, walks, and breathes, in addition to how it responds to injury and rehabilitation. Advanced biomechanical modeling methods, such as inverse dynamics, finite element analysis, and musculoskeletal modeling are used to simulate and investigate human situations in regard to movement and injury. Biomechanical technologies are progressing to answer contemporary medical questions. The future of biomechanics is dependent on interdisciplinary research efforts and the education of tomorrow’s scientists

    The impact of rheumatoid arthritis on foot function in the early stages of disease: a clinical case series

    Get PDF
    BACKGROUND Foot involvement occurs early in rheumatoid arthritis but the extent to which this impacts on the structure and function leading to impairment and foot related disability is unknown. The purpose of this study was to compare clinical disease activity, impairment, disability, and foot function in normal and early rheumatoid arthritis (RA) feet using standardised clinical measures and 3D gait analysis. METHODS Twelve RA patients with disease duration ≤2 years and 12 able-bodied adults matched for age and sex underwent 3D gait analysis to measure foot function. Disease impact was measured using the Leeds Foot impact Scale (LFIS) along with standard clinical measures of disease activity, pain and foot deformity. For this small sample, the mean differences between the groups and associated confidence intervals were calculated using the t distribution RESULTS Moderate-to-high foot impairment and related disability were detected amongst the RA patients. In comparison with age- and sex-matched controls, the patients with early RA walked slower (1.05 m/s Vs 1.30 m/s) and had a longer double-support phase (19.3% Vs 15.8%). In terminal stance, the heel rise angle was reduced in the patients in comparison with normal (-78.9° Vs -85.7°). Medial arch height was lower and peak eversion in stance greater in the RA patients. The peak ankle plantarflexion power profile was lower in the patients in comparison with the controls (3.4 W/kg Vs 4.6 W/kg). Pressure analysis indicated that the RA patients had a reduced lesser toe contact area (7.6 cm2 Vs 8.1 cm2), elevated peak forefoot pressure (672 kPa Vs 553 kPa) and a larger mid-foot contact area (24.6 cm2 Vs 19.4 cm2). CONCLUSION Analysis detected small but clinically important changes in foot function in a small cohort of RA patients with disease duration <2 years. These were accompanied by active joint disease and impairment and disability

    Embracing additive manufacture: implications for foot and ankle orthosis design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The design of foot and ankle orthoses is currently limited by the methods used to fabricate the devices, particularly in terms of geometric freedom and potential to include innovative new features. Additive manufacturing (AM) technologies, where objects are constructed via a series of sub-millimetre layers of a substrate material, may present the opportunity to overcome these limitations and allow novel devices to be produced that are highly personalised for the individual, both in terms of fit and functionality.</p> <p>Two novel devices, a foot orthosis (FO) designed to include adjustable elements to relieve pressure at the metatarsal heads, and an ankle foot orthosis (AFO) designed to have adjustable stiffness levels in the sagittal plane, were developed and fabricated using AM. The devices were then tested on a healthy participant to determine if the intended biomechanical modes of action were achieved.</p> <p>Results</p> <p>The adjustable, pressure relieving FO was found to be able to significantly reduce pressure under the targeted metatarsal heads. The AFO was shown to have distinct effects on ankle kinematics which could be varied by adjusting the stiffness level of the device.</p> <p>Conclusions</p> <p>The results presented here demonstrate the potential design freedom made available by AM, and suggest that it may allow novel personalised orthotic devices to be produced which are beyond the current state of the art.</p

    Biomechanical demands differentiate transitioning vs. continuous stair ascent gait in older women

    Get PDF
    Background Stair ascent mechanics change with age, but little is known about the differing functional demands of transitioning and continuous ascent. Work investigating the risky transition from gait to ascent is sparse, and the strategies that older adults adopt to achieve these demanding tasks have not been investigated. Methods This study compared the biomechanics of a 2-step transitional (floor-to-step2) and continuous ascent cycle (step1-to-step3) and investigated the role of limb preference in relation to dynamometer-derived knee strength during this transition. A biomechanical analysis of 36 women (60–83 years) ascending a 3-step staircase was conducted. Findings The 2-step transitioning cycle was completed quicker, with a larger range of motion, increased forces, larger knee flexor and dorsiflexor moments and ankle powers (P ≤ 0.05), but reduced hip and knee flexion, smaller hip extensor moments and hip and knee powers compared to continuous ascent. During the transition, 44% of the participants demonstrated a consistent limb preference. In these cases large between-limb extensor strength differences existed (13.8%) and 71% of these participants utilised the stronger limb to execute the 2-step transitional cycle. Interpretation The preferential stronger-limb 2-step transitioning strategy conflicts with previous recommendations of a stronger lead limb for frail/asymmetric populations. Our findings suggest that most healthy older women with large between-limb differences utilise the stronger limb to achieve the considerable propulsion required to redirect momentum during the 2-step transition. The biomechanical demands of ascent, relative to limb strength, can inform exercise programmes by targeting specific muscle groups to help older adults maintain/improve general functioning

    Associations of region-specific foot pain and foot biomechanics: the framingham foot study

    Get PDF
    BACKGROUND. Specific regions of the foot are responsible for the gait tasks of weight acceptance, single-limb support, and forward propulsion. With region foot pain, gait abnormalities may arise and affect the plantar pressure and force pattern utilized. Therefore, this study’s purpose was to evaluate plantar pressure and force pattern differences between adults with and without region-specific foot pain. METHODS. Plantar pressure and force data were collected on Framingham Foot Study members while walking barefoot at a self-selected pace. Foot pain was evaluated by self-report and grouped by foot region (toe, forefoot, midfoot, or rearfoot) or regions (two or three or more regions) of pain. Unadjusted and adjusted linear regression with generalized estimating equations was used to determine associations between feet with and without foot pain. RESULTS. Individuals with distal foot (forefoot or toes) pain had similar maximum vertical forces under the pain region, while those with proximal foot (rearfoot or midfoot) pain had different maximum vertical forces compared to those without regional foot pain (referent). During walking, there were significant differences in plantar loading and propulsion ranging from 2% to 4% between those with and without regional foot pain. Significant differences in normalized maximum vertical force and plantar pressure ranged from 5.3% to 12.4% and 3.4% to 24.1%, respectively, between those with and without regional foot pain. CONCLUSIONS. Associations of regional foot pain with plantar pressure and force were different by regions of pain. Region-specific foot pain was not uniformly associated with an increase or decrease in loading and pressure patterns regions of pain

    Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans

    Get PDF
    The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans

    Biomechanical demands of the 2-step transitional gait cycles linking level gait and stair descent gait in older women

    Get PDF
    Stair descent is an inherently complex form of locomotion posing a high falls risk for older adults, specifically when negotiating the transitional gait cycles linking level gait and descent. The aim of this study was to enhance our understanding of the biomechanical demands by comparing the demands of these transitions. Lower limb kinematics and kinetics of the 2-step transitions linking level and descent gait at the top (level-to-descent) and the bottom (descent-to-level) of the staircase were quantified in 36 older women with no falls history. Despite undergoing the same vertical displacement (2-steps), the following significant (p&lt;.05) differences were observed during the top transition compared to the bottom transition: reduced step velocity; reduced hip extension and increased ankle dorsiflexion (late stance/pre-swing); reduced ground reaction forces, larger knee extensor moments and powers (absorption; late stance); reduced ankle plantarflexor moments (early and late stance) and increased ankle powers (mid-stance). Top transition biomechanics were similar to those reported previously for continuous descent. Kinetic differences at the knee and ankle signify the contrasting and prominent functions of controlled lowering during the top transition and forward continuance during the bottom transition. The varying musculoskeletal demands encountered during each functional sub-task should be addressed in falls prevention programmes with elderly populations where the greatest clinical impact may be achieved. Knee extensor eccentric power through flexion exercises would facilitate a smooth transition at the top and improving ankle plantarflexion strength during single and double limb stance activities would ease the transition into level gait following continuous descent

    Mechanical lifting energy consumption in work activities designed by means of the "revised NIOSH lifting equation"\u80\u9d

    Get PDF
    The aims of the present work were: to calculate lifting energy consumption (LEC) in work activities designed to have a growing lifting index (LI) by means of revised NIOSH lifting equation; to evaluate the relationship between LEC and forces at the L5-S1 joint. The kinematic and kinetic data of 20 workers were recorded during the execution of lifting tasks in three conditions. We computed kinetic, potential and mechanical energy and the corresponding LEC by considering three different centers of mass of: 1) the load (CoML); 2) the multi-segment upper body model and load together (CoMUpp+L); 3) the whole body and load together (CoMTot). We also estimated compression and shear forces. Results shows that LEC calculated for CoMUpp+L and CoMTot grew significantly with the LI and that all the lifting condition pairs are discriminated. The correlation analysis highlighted a relationship between LEC and forces that determine injuries at the L5-S1 joint

    Influence of the controller design on the accuracy of a forward dynamic simulation of human gait

    Get PDF
    The analysis of a captured motion can be addressed by means of forward or inverse dynamics approaches. For this purpose, a 12 segment 2D model with 14 degrees of freedom is developed and both methods are implemented using multibody dynamics techniques. The inverse dynamic analysis uses the experimentally captured motion to calculate the joint torques produced by the musculoskeletal system during the movement. This information is then used as input data for a forward dynamic analysis without any control design. This approach is able to reach the desired pattern within half cycle. In order to achieve the simulation of the complete gait cycle two different control strategies are implemented to stabilize all degrees of freedom: a proportional derivative (PD) control and a computed torque control (CTC). The selection of the control parameters is presented in this work: a kinematic perturbation is used for tuning PD gains, and pole placement techniques are used in order to determine the CTC parameters. A performance evaluation of the two controllers is done in order to quantify the accuracy of the simulated motion and the control torques needed when using one or the other control approach to track a known human walking pattern.Postprint (author's final draft
    • …
    corecore