234 research outputs found

    Behavioral Learning in a Cognitive Neuromorphic Robot: An Integrative Approach

    Get PDF
    We present here a learning system using the iCub humanoid robot and the SpiNNaker neuromorphic chip to solve the real-world task of object-specific attention. Integrating spiking neural networks with robots introduces considerable complexity for questionable benefit if the objective is simply task performance. But, we suggest, in a cognitive robotics context, where the goal is understanding how to compute, such an approach may yield useful insights to neural architecture as well as learned behavior, especially if dedicated neural hardware is available. Recent advances in cognitive robotics and neuromorphic processing now make such systems possible. Using a scalable, structured, modular approach, we build a spiking neural network where the effects and impact of learning can be predicted and tested, and the network can be scaled or extended to new tasks automatically. We introduce several enhancements to a basic network and show how they can be used to direct performance toward behaviorally relevant goals. Results show that using a simple classical spike-timing-dependent plasticity (STDP) rule on selected connections, we can get the robot (and network) to progress from poor task-specific performance to good performance. Behaviorally relevant STDP appears to contribute strongly to positive learning: “do this” but less to negative learning: “don't do that.” In addition, we observe that the effect of structural enhancements tends to be cumulative. The overall system suggests that it is by being able to exploit combinations of effects, rather than any one effect or property in isolation, that spiking networks can achieve compelling, task-relevant behavior

    On Real-Time AER 2-D Convolutions Hardware for Neuromorphic Spike-Based Cortical Processing

    Get PDF
    In this paper, a chip that performs real-time image convolutions with programmable kernels of arbitrary shape is presented. The chip is a first experimental prototype of reduced size to validate the implemented circuits and system level techniques. The convolution processing is based on the address–event-representation (AER) technique, which is a spike-based biologically inspired image and video representation technique that favors communication bandwidth for pixels with more information. As a first test prototype, a pixel array of 16x16 has been implemented with programmable kernel size of up to 16x16. The chip has been fabricated in a standard 0.35- m complimentary metal–oxide–semiconductor (CMOS) process. The technique also allows to process larger size images by assembling 2-D arrays of such chips. Pixel operation exploits low-power mixed analog–digital circuit techniques. Because of the low currents involved (down to nanoamperes or even picoamperes), an important amount of pixel area is devoted to mismatch calibration. The rest of the chip uses digital circuit techniques, both synchronous and asynchronous. The fabricated chip has been thoroughly tested, both at the pixel level and at the system level. Specific computer interfaces have been developed for generating AER streams from conventional computers and feeding them as inputs to the convolution chip, and for grabbing AER streams coming out of the convolution chip and storing and analyzing them on computers. Extensive experimental results are provided. At the end of this paper, we provide discussions and results on scaling up the approach for larger pixel arrays and multilayer cortical AER systems.Commission of the European Communities IST-2001-34124 (CAVIAR)Commission of the European Communities 216777 (NABAB)Ministerio de Educación y Ciencia TIC-2000-0406-P4Ministerio de Educación y Ciencia TIC-2003-08164-C03-01Ministerio de Educación y Ciencia TEC2006-11730-C03-01Junta de Andalucía TIC-141

    Humanistic Computing: WearComp as a New Framework and Application for Intelligent Signal Processing

    Get PDF
    Humanistic computing is proposed as a new signal processing framework in which the processing apparatus is inextricably intertwined with the natural capabilities of our human body and mind. Rather than trying to emulate human intelligence, humanistic computing recognizes that the human brain is perhaps the best neural network of its kind, and that there are many new signal processing applications (within the domain of personal technologies) that can make use of this excellent but often overlooked processor. The emphasis of this paper is on personal imaging applications of humanistic computing, to take a first step toward an intelligent wearable camera system that can allow us to effortlessly capture our day-to-day experiences, help us remember and see better, provide us with personal safety through crime reduction, and facilitate new forms of communication through collective connected humanistic computing. The author’s wearable signal processing hardware, which began as a cumbersome backpackbased photographic apparatus of the 1970’s and evolved into a clothing-based apparatus in the early 1980’s, currently provides the computational power of a UNIX workstation concealed within ordinary-looking eyeglasses and clothing. Thus it may be worn continuously during all facets of ordinary day-to-day living, so that, through long-term adaptation, it begins to function as a true extension of the mind and body
    • …
    corecore