4,698 research outputs found

    An examination of the verbal behaviour of intergroup discrimination

    Get PDF
    This thesis examined relationships between psychological flexibility, psychological inflexibility, prejudicial attitudes, and dehumanization across three cross-sectional studies with an additional proposed experimental study. Psychological flexibility refers to mindful attention to the present moment, willing acceptance of private experiences, and engaging in behaviours congruent with one’s freely chosen values. Inflexibility, on the other hand, indicates a tendency to suppress unwanted thoughts and emotions, entanglement with one’s thoughts, and rigid behavioural patterns. Study 1 found limited correlations between inflexibility and sexism, racism, homonegativity, and dehumanization. Study 2 demonstrated more consistent positive associations between inflexibility and prejudice. And Study 3 controlled for right-wing authoritarianism and social dominance orientation, finding inflexibility predicted hostile sexism and racism beyond these factors. While showing some relationships, particularly with sexism and racism, psychological inflexibility did not consistently correlate with varied prejudices across studies. The proposed randomized controlled trial aims to evaluate an Acceptance and Commitment Therapy intervention to reduce sexism through enhanced psychological flexibility. Overall, findings provide mixed support for the utility of flexibility-based skills in addressing complex societal prejudices. Research should continue examining flexibility integrated with socio-cultural approaches to promote equity

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics

    Elements of Ion Linear Accelerators, Calm in The Resonances, Other_Tales

    Full text link
    The main part of this book, Elements of Linear Accelerators, outlines in Part 1 a framework for non-relativistic linear accelerator focusing and accelerating channel design, simulation, optimization and analysis where space charge is an important factor. Part 1 is the most important part of the book; grasping the framework is essential to fully understand and appreciate the elements within it, and the myriad application details of the following Parts. The treatment concentrates on all linacs, large or small, intended for high-intensity, very low beam loss, factory-type application. The Radio-Frequency-Quadrupole (RFQ) is especially developed as a representative and the most complicated linac form (from dc to bunched and accelerated beam), extending to practical design of long, high energy linacs, including space charge resonances and beam halo formation, and some challenges for future work. Also a practical method is presented for designing Alternating-Phase- Focused (APF) linacs with long sequences and high energy gain. Full open-source software is available. The following part, Calm in the Resonances and Other Tales, contains eyewitness accounts of nearly 60 years of participation in accelerator technology. (September 2023) The LINACS codes are released at no cost and, as always,with fully open-source coding. (p.2 & Ch 19.10)Comment: 652 pages. Some hundreds of figures - all images, there is no data in the figures. (September 2023) The LINACS codes are released at no cost and, as always,with fully open-source coding. (p.2 & Ch 19.10

    LOW POWER AND HIGH SIGNAL TO NOISE RATIO BIO-MEDICAL AFE DESIGN TECHNIQUES

    Get PDF
    The research work described in this thesis was focused on finding novel techniques to implement a low-power and noise Bio-Medical Analog Front End (BMEF) circuit technique to enable high-quality Electrocardiography (ECG) sensing. Usually, an ECG signal and several bio-medical signals are sensed from the human body through a pair of electrodes. The electrical characteristics of the very small amplitude (1u-10mV) signals are corrupted by random noise and have a significant dc offset. 50/60Hz power supply coupling noise is one of the biggest cross-talk signals compared to the thermally generated random noise. These signals are even AFE composed of an Instrumentation Amplifier (IA), which will have a better Common Mode rejection ratio (CMRR). The main function of the AFE is to convert the weak electrical Signal into large signals whose amplitude is large enough for an Analog Digital Converter (ADC) to detect without having any errors. A Variable Gain Amplifier (VGA) is sometimes required to adjust signal amplitude to maintain the dynamic range of the ADC. Also, the Bio-medical transceiver needs an accurate and temperature-independent reference voltage and current for the ADC, commonly known as Bandgap Reference Circuit (BGR). These circuits need to consume as low power as possible to enable these circuits to be powered from the battery. The work started with analysing the existing circuit techniques for the circuits mentioned above and finding the key important improvements required to reach the target specifications. Previously proposed IA is generated based on voltage mode signal processing. To improve the CMRR (119dB), we proposed a current mode-based IA with an embedded DC cancellation technique. State-of-the-art VGA circuits were built based on the degeneration principle of the differential pair, which will enable the variable gain purpose, but none of these techniques discussed linearity improvement, which is very important in modern CMOS technologies. This work enhances the total Harmonic distortion (THD) by 21dB in the worst case by exploiting the feedback techniques around the differential pair. Also, this work proposes a low power curvature compensated bandgap with 2ppm/0C temperature sensitivity while consuming 12.5uW power from a 1.2V dc power supply. All circuits were built in 45nm TSMC-CMOS technology and simulated with all the performance metrics with Cadence (spectre) simulator. The circuit layout was carried out to study post-layout parasitic effect sensitivity

    Geometry and Topology in Memory and Navigation

    Get PDF
    Okinawa Institute of Science and Technology Graduate UniversityDoctor of PhilosophyGeometry and topology offer rich mathematical worlds and perspectives with which to study and improve our understanding of cognitive function. Here I present the following examples: (1) a functional role for inhibitory diversity in associative memories with graph- ical relationships; (2) improved memory capacity in an associative memory model with setwise connectivity, with implications for glial and dendritic function; (3) safe and effi- cient group navigation among conspecifics using purely local geometric information; and (4) enhancing geometric and topological methods to probe the relations between neural activity and behaviour. In each work, tools and insights from geometry and topology are used in essential ways to gain improved insights or performance. This thesis contributes to our knowledge of the potential computational affordances of biological mechanisms (such as inhibition and setwise connectivity), while also demonstrating new geometric and topological methods and perspectives with which to deepen our understanding of cognitive tasks and their neural representations.doctoral thesi

    Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023

    Get PDF
    Dieser Tagungsband enthĂ€lt die BeitrĂ€ge des 33. Workshops „Computational Intelligence“ der vom 23.11. – 24.11.2023 in Berlin stattfindet. Die Schwerpunkte sind Methoden, Anwendungen und Tools fĂŒr ° Fuzzy-Systeme, ° KĂŒnstliche Neuronale Netze, ° EvolutionĂ€re Algorithmen und ° Data-Mining-Verfahren sowie der Methodenvergleich anhand von industriellen und Benchmark-Problemen.The workshop proceedings contain the contributions of the 33rd workshop "Computational Intelligence" which will take place from 23.11. - 24.11.2023 in Berlin. The focus is on methods, applications and tools for ° Fuzzy systems, ° Artificial Neural Networks, ° Evolutionary algorithms and ° Data mining methods as well as the comparison of methods on the basis of industrial and benchmark problems

    Sounds of the Land of Promise: Listening to Ralph Ellison’s Metaphors of Memory in Invisible Man

    Get PDF
    This project studies Ralph Ellison’s incorporation of sonic memory, soundscapes (sonic environments), and music into his novel Invisible Man (1952). The central focus of this dissertation is the influence of the sonic on Ellison’s work, beyond his interest in jazz. This project argues that Ellison’s work incorporates his memories of sound and music as well as the sonic imagery and philosophies of the sonic he draws from his literary influences, namely T.S. Eliot, James Joyce, and Fyodor Dostoevsky. I approach Invisible Man as a semi-autobiographical text, which I argue transfigures Ellison’s own sonic experiences into fiction. I draw on Ellison’s essays, interviews, and letters, as well as the two major biographies on Ellison, Lawrence Jackson’s Ralph Ellison: Emergence of Genius (2002) and Arnold Rampersad’s Ralph Ellison: A Biography (2007), in order to contextualize the sonic elements and metaphors of memory that Ellison integrates into the soundscapes of Invisible Man. This project argues that Ellison is an “earwitness” who draws on the sonic in his work in order to emphasize the significance of listening as well as draw attention to overlooked African-American soundscapes. Carolyn Birdsall elaborates on the term “earwitness” as follows: “In 1977, Raymond Murray Schafer defined the earwitness as an author who lived in the historical past, and who can be trusted ‘when writing about sounds directly experienced and intimately known’ (1994 [1977], p. 6). Schafer’s understanding of the earwitness endorses the authority of literary texts for conveying an authentic experience of historical sounds” (169). Essentially, Ellison and his novel’s narrator are concerned with both the intimacy of listening and the critical consideration of the psychological and personal impact of diverse and unique sound memories and soundscapes. I employ a variety of approaches in my study of Ellison’s use of the sonic in his work – including history, autobiography, analysis, and compositional method – in order to contextualize the nuances of sonic experience that inform Ellison’s writing. I begin this project with a study of the historical context that informs Ellison’s work, and then I gradually introduce analytical perspectives of the sonic as the dissertation progresses. I scaffold this project in this way in order to foreground the historical, contextual, and subjective uniqueness of listening before I apply scholarly approaches and analysis of the sonic to Ellison’s work later in the dissertation. Chapters One and Two are history-based, as I provide historical context on Harlem’s soundscapes and Ellison’s education at the Tuskegee Institute. Chapters Three and Four are analytical approaches to Ellison’s use of the sonic which build on the background information I provide in Chapters One and Two. Chapter Five blends sonic analysis, autobiographical and historical context, and compositional method in order to demonstrate the breadth of Ellison’s nuanced integration of the sonic into his writing

    Evaluating footwear “in the wild”: Examining wrap and lace trail shoe closures during trail running

    Get PDF
    Trail running participation has grown over the last two decades. As a result, there have been an increasing number of studies examining the sport. Despite these increases, there is a lack of understanding regarding the effects of footwear on trail running biomechanics in ecologically valid conditions. The purpose of our study was to evaluate how a Wrap vs. Lace closure (on the same shoe) impacts running biomechanics on a trail. Thirty subjects ran a trail loop in each shoe while wearing a global positioning system (GPS) watch, heart rate monitor, inertial measurement units (IMUs), and plantar pressure insoles. The Wrap closure reduced peak foot eversion velocity (measured via IMU), which has been associated with fit. The Wrap closure also increased heel contact area, which is also associated with fit. This increase may be associated with the subjective preference for the Wrap. Lastly, runners had a small but significant increase in running speed in the Wrap shoe with no differences in heart rate nor subjective exertion. In total, the Wrap closure fit better than the Lace closure on a variety of terrain. This study demonstrates the feasibility of detecting meaningful biomechanical differences between footwear features in the wild using statistical tools and study design. Evaluating footwear in ecologically valid environments often creates additional variance in the data. This variance should not be treated as noise; instead, it is critical to capture this additional variance and challenges of ecologically valid terrain if we hope to use biomechanics to impact the development of new products

    Affective social anthropomorphic intelligent system

    Full text link
    Human conversational styles are measured by the sense of humor, personality, and tone of voice. These characteristics have become essential for conversational intelligent virtual assistants. However, most of the state-of-the-art intelligent virtual assistants (IVAs) are failed to interpret the affective semantics of human voices. This research proposes an anthropomorphic intelligent system that can hold a proper human-like conversation with emotion and personality. A voice style transfer method is also proposed to map the attributes of a specific emotion. Initially, the frequency domain data (Mel-Spectrogram) is created by converting the temporal audio wave data, which comprises discrete patterns for audio features such as notes, pitch, rhythm, and melody. A collateral CNN-Transformer-Encoder is used to predict seven different affective states from voice. The voice is also fed parallelly to the deep-speech, an RNN model that generates the text transcription from the spectrogram. Then the transcripted text is transferred to the multi-domain conversation agent using blended skill talk, transformer-based retrieve-and-generate generation strategy, and beam-search decoding, and an appropriate textual response is generated. The system learns an invertible mapping of data to a latent space that can be manipulated and generates a Mel-spectrogram frame based on previous Mel-spectrogram frames to voice synthesize and style transfer. Finally, the waveform is generated using WaveGlow from the spectrogram. The outcomes of the studies we conducted on individual models were auspicious. Furthermore, users who interacted with the system provided positive feedback, demonstrating the system's effectiveness.Comment: Multimedia Tools and Applications (2023
    • 

    corecore