152 research outputs found

    Uranus: A Middleware Architecture for Dependable AAL and Vital Signs Monitoring Applications

    Get PDF
    The design and realization of health monitoring applications has attracted the interest of large communities both from industry and academia. Several research challenges have been faced and issues tackled in order to realize effective applications for the management and monitoring of people with chronic diseases, people with disabilities, elderly people. However, there is a lack of efficient tools that enable rapid and possibly cheap realization of reliable health monitoring applications. The paper presents Uranus, a service oriented middleware architecture, which provides basic functions for the integration of different kinds of biomedical sensors. Uranus has also distinguishing characteristics like services for the run-time verification of the correctness of running applications and mechanisms for the recovery from failures. The paper concludes with two case studies as proof of concept

    Adaptive manuals as assistive technology to support and train people with acquired brain injury in their daily life activities

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00779-012-0560-zAssistive technologies and ubiquitous computing can be related since both try to help people in their lives. This common objective motivated us to develop and evaluate a system that puts ubiquitous computing technologies into the rehabilitation process of people with acquired brain injury. Thus, in this paper, we present and evaluate a system that shows adaptive manuals for daily-life activities for people with acquired brain injury. This first evaluation allowed us to validate our approach and also to extract valuable information about these systems as well as environmental factors that may affect the patients.This work was partially funded by ASIES (Adapting Social & Intelligent Environments to Support people with special needs), Ministerio de Ciencia e Innovación - TIN2010-17344, and e-Madrid (Investigación y desarrollo de tecnologías para el e-learning en la Comunidad de Madrid) S2009/TIC-1650

    NFC based provisioning of instructional videos to assist with instrumental activities of daily living

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Existing assistive living and prompting based solutions have adopted a relatively complex approach to supporting individuals. These solutions have involved sensor based monitoring, activity recognition and assistance provisioning. Traditionally they have suffered from a number of issues rooted in scalability and performance levels associated with the activity recognition process. This paper introduces a simplistic approach to assistive living within a user's residence through the use of NFC tags and smart devices. The core concept of this approach is presented and is subsequently placed within the context of related work. A description of the architecture is provided and results following technical evaluation of the first system prototype are discussed

    ECSCW 2013 Adjunct Proceedings The 13th European Conference on Computer Supported Cooperative Work 21 - 25. September 2013, Paphos, Cyprus

    Get PDF
    This volume presents the adjunct proceedings of ECSCW 2013.While the proceedings published by Springer Verlag contains the core of the technical program, namely the full papers, the adjunct proceedings includes contributions on work in progress, workshops and master classes, demos and videos, the doctoral colloquium, and keynotes, thus indicating what our field may become in the future

    Safe Beacon: A Bluetooth Based Solution to Monitor Egress of Dementia Sufferers within a Residential Setting

    Get PDF
    The global population is ageing, as a consequence of this there will be a greater incidence of ageing related illnesses which cause cognitive impairment–such as Alzheimer’s disease. Within residential care homes, such cognitive impairment can lead to wandering of individuals beyond the boundaries of safety provided. This wandering, particularly in urban areas can be life threatening. This study introduces a novel solution to detect, and alert caregivers of, egress of at-risk inhabitants of a care home. This solution operates through a combination of wearable Bluetooth beacons and beam-formed listening devices. In an evaluation process involving 275 egress events, this solution proved to offer accurate operation with no incidence of false positives. Notably, this solution has been deployed within a real residential care home environment for over 12 months. Proposed future work discusses improvements to this solution

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results

    Activity Recognition Using Hybrid Generative/Discriminative Models on Home Environments Using Binary Sensors

    Get PDF
    Activities of daily living are good indicators of elderly health status, and activity recognition in smart environments is a well-known problem that has been previously addressed by several studies. In this paper, we describe the use of two powerful machine learning schemes, ANN (Artificial Neural Network) and SVM (Support Vector Machines), within the framework of HMM (Hidden Markov Model) in order to tackle the task of activity recognition in a home setting. The output scores of the discriminative models, after processing, are used as observation probabilities of the hybrid approach. We evaluate our approach by comparing these hybrid models with other classical activity recognition methods using five real datasets. We show how the hybrid models achieve significantly better recognition performance, with significance level p<0 : 0 5, proving that the hybrid approach is better suited for the addressed domain.This work has been supported by the Ambient Assisted Living Programme (Joint Initiative by the European Commission and EU Member States) under the Trainutri (Training and nutrition senior social platform) Project (AAL-2009-2-129) and by the Spanish Government under i-Support (Intelligent Agent Based Driver Decision Support) Project (TRA2011-29454-C03-03)

    Probabilistic modelling and inference of human behaviour from mobile phone time series

    No full text
    With an estimated 4.1 billion subscribers around the world, the mobile phone offers a unique opportunity to sense and understand human behaviour from location, co-presence and communication data. While the benefit of modelling this unprecedented amount of data is widely recognised, a number of challenges impede the development of accurate behaviour models. In this thesis, we identify and address two modelling problems and show that their consideration improves the accuracy of behaviour inference. We first examine the modelling of long-range dependencies in human behaviour. Human behaviour models only take into account short-range dependencies in mobile phone time series. Using information theory, we quantify long-range dependencies in mobile phone time series for the first time, demonstrate that they exhibit periodic oscillations and introduce novel tools to analyse them. We further show that considering what the user did 24 hours earlier improves accuracy when predicting user behaviour five hours or longer in advance. The second problem that we address is the modelling of temporal variations in human behaviour. The time spent by a user on an activity varies from one day to the next. In order to recognise behaviour patterns despite temporal variations, we establish a methodological connection between human behaviour modelling and biological sequence alignment. This connection allows us to compare, cluster and model behaviour sequences and introduce novel features for behaviour recognition which improve its accuracy. The experiments presented in this thesis have been conducted on the largest publicly available mobile phone dataset labelled in an unsupervised fashion and are entirely repeatable. Furthermore, our techniques only require cellular data which can easily be recorded by today's mobile phones and could benefit a wide range of applications including life logging, health monitoring, customer profiling and large-scale surveillance

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic
    corecore