16,949 research outputs found

    Locally Testable Codes and Cayley Graphs

    Full text link
    We give two new characterizations of (\F_2-linear) locally testable error-correcting codes in terms of Cayley graphs over \F_2^h: \begin{enumerate} \item A locally testable code is equivalent to a Cayley graph over \F_2^h whose set of generators is significantly larger than hh and has no short linear dependencies, but yields a shortest-path metric that embeds into â„“1\ell_1 with constant distortion. This extends and gives a converse to a result of Khot and Naor (2006), which showed that codes with large dual distance imply Cayley graphs that have no low-distortion embeddings into â„“1\ell_1. \item A locally testable code is equivalent to a Cayley graph over \F_2^h that has significantly more than hh eigenvalues near 1, which have no short linear dependencies among them and which "explain" all of the large eigenvalues. This extends and gives a converse to a recent construction of Barak et al. (2012), which showed that locally testable codes imply Cayley graphs that are small-set expanders but have many large eigenvalues. \end{enumerate}Comment: 22 page

    Testing Booleanity and the Uncertainty Principle

    Get PDF
    Let f:{-1,1}^n -> R be a real function on the hypercube, given by its discrete Fourier expansion, or, equivalently, represented as a multilinear polynomial. We say that it is Boolean if its image is in {-1,1}. We show that every function on the hypercube with a sparse Fourier expansion must either be Boolean or far from Boolean. In particular, we show that a multilinear polynomial with at most k terms must either be Boolean, or output values different than -1 or 1 for a fraction of at least 2/(k+2)^2 of its domain. It follows that given oracle access to f, together with the guarantee that its representation as a multilinear polynomial has at most k terms, one can test Booleanity using O(k^2) queries. We show an \Omega(k) queries lower bound for this problem. Our proof crucially uses Hirschman's entropic version of Heisenberg's uncertainty principle.Comment: 15 page

    Boolean function monotonicity testing requires (almost) n1/2n^{1/2} non-adaptive queries

    Full text link
    We prove a lower bound of Ω(n1/2−c)\Omega(n^{1/2 - c}), for all c>0c>0, on the query complexity of (two-sided error) non-adaptive algorithms for testing whether an nn-variable Boolean function is monotone versus constant-far from monotone. This improves a Ω~(n1/5)\tilde{\Omega}(n^{1/5}) lower bound for the same problem that was recently given in [CST14] and is very close to Ω(n1/2)\Omega(n^{1/2}), which we conjecture is the optimal lower bound for this model

    Public projects, Boolean functions and the borders of Border's theorem

    Full text link
    Border's theorem gives an intuitive linear characterization of the feasible interim allocation rules of a Bayesian single-item environment, and it has several applications in economic and algorithmic mechanism design. All known generalizations of Border's theorem either restrict attention to relatively simple settings, or resort to approximation. This paper identifies a complexity-theoretic barrier that indicates, assuming standard complexity class separations, that Border's theorem cannot be extended significantly beyond the state-of-the-art. We also identify a surprisingly tight connection between Myerson's optimal auction theory, when applied to public project settings, and some fundamental results in the analysis of Boolean functions.Comment: Accepted to ACM EC 201

    Negative weights make adversaries stronger

    Full text link
    The quantum adversary method is one of the most successful techniques for proving lower bounds on quantum query complexity. It gives optimal lower bounds for many problems, has application to classical complexity in formula size lower bounds, and is versatile with equivalent formulations in terms of weight schemes, eigenvalues, and Kolmogorov complexity. All these formulations rely on the principle that if an algorithm successfully computes a function then, in particular, it is able to distinguish between inputs which map to different values. We present a stronger version of the adversary method which goes beyond this principle to make explicit use of the stronger condition that the algorithm actually computes the function. This new method, which we call ADV+-, has all the advantages of the old: it is a lower bound on bounded-error quantum query complexity, its square is a lower bound on formula size, and it behaves well with respect to function composition. Moreover ADV+- is always at least as large as the adversary method ADV, and we show an example of a monotone function for which ADV+-(f)=Omega(ADV(f)^1.098). We also give examples showing that ADV+- does not face limitations of ADV like the certificate complexity barrier and the property testing barrier.Comment: 29 pages, v2: added automorphism principle, extended to non-boolean functions, simplified examples, added matching upper bound for AD

    Processing Succinct Matrices and Vectors

    Full text link
    We study the complexity of algorithmic problems for matrices that are represented by multi-terminal decision diagrams (MTDD). These are a variant of ordered decision diagrams, where the terminal nodes are labeled with arbitrary elements of a semiring (instead of 0 and 1). A simple example shows that the product of two MTDD-represented matrices cannot be represented by an MTDD of polynomial size. To overcome this deficiency, we extended MTDDs to MTDD_+ by allowing componentwise symbolic addition of variables (of the same dimension) in rules. It is shown that accessing an entry, equality checking, matrix multiplication, and other basic matrix operations can be solved in polynomial time for MTDD_+-represented matrices. On the other hand, testing whether the determinant of a MTDD-represented matrix vanishes PSPACE$-complete, and the same problem is NP-complete for MTDD_+-represented diagonal matrices. Computing a specific entry in a product of MTDD-represented matrices is #P-complete.Comment: An extended abstract of this paper will appear in the Proceedings of CSR 201
    • …
    corecore