15,108 research outputs found

    A Forensically Sound Adversary Model for Mobile Devices

    Full text link
    In this paper, we propose an adversary model to facilitate forensic investigations of mobile devices (e.g. Android, iOS and Windows smartphones) that can be readily adapted to the latest mobile device technologies. This is essential given the ongoing and rapidly changing nature of mobile device technologies. An integral principle and significant constraint upon forensic practitioners is that of forensic soundness. Our adversary model specifically considers and integrates the constraints of forensic soundness on the adversary, in our case, a forensic practitioner. One construction of the adversary model is an evidence collection and analysis methodology for Android devices. Using the methodology with six popular cloud apps, we were successful in extracting various information of forensic interest in both the external and internal storage of the mobile device

    Development, test and comparison of two Multiple Criteria Decision Analysis(MCDA) models: A case of healthcare infrastructure location

    Get PDF
    When planning a new development, location decisions have always been a major issue. This paper examines and compares two modelling methods used to inform a healthcare infrastructure location decision. Two Multiple Criteria Decision Analysis (MCDA) models were developed to support the optimisation of this decision-making process, within a National Health Service (NHS) organisation, in the UK. The proposed model structure is based on seven criteria (environment and safety, size, total cost, accessibility, design, risks and population profile) and 28 sub-criteria. First, Evidential Reasoning (ER) was used to solve the model, then, the processes and results were compared with the Analytical Hierarchy Process (AHP). It was established that using ER or AHP led to the same solutions. However, the scores between the alternatives were significantly different; which impacted the stakeholders‟ decision-making. As the processes differ according to the model selected, ER or AHP, it is relevant to establish the practical and managerial implications for selecting one model or the other and providing evidence of which models best fit this specific environment. To achieve an optimum operational decision it is argued, in this study, that the most transparent and robust framework is achieved by merging ER process with the pair-wise comparison, an element of AHP. This paper makes a defined contribution by developing and examining the use of MCDA models, to rationalise new healthcare infrastructure location, with the proposed model to be used for future decision. Moreover, very few studies comparing different MCDA techniques were found, this study results enable practitioners to consider even further the modelling characteristics to ensure the development of a reliable framework, even if this means applying a hybrid approach

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system

    A Labelling Framework for Probabilistic Argumentation

    Full text link
    The combination of argumentation and probability paves the way to new accounts of qualitative and quantitative uncertainty, thereby offering new theoretical and applicative opportunities. Due to a variety of interests, probabilistic argumentation is approached in the literature with different frameworks, pertaining to structured and abstract argumentation, and with respect to diverse types of uncertainty, in particular the uncertainty on the credibility of the premises, the uncertainty about which arguments to consider, and the uncertainty on the acceptance status of arguments or statements. Towards a general framework for probabilistic argumentation, we investigate a labelling-oriented framework encompassing a basic setting for rule-based argumentation and its (semi-) abstract account, along with diverse types of uncertainty. Our framework provides a systematic treatment of various kinds of uncertainty and of their relationships and allows us to back or question assertions from the literature
    corecore