735 research outputs found

    Transient electrothermal simulation of power semiconductor devices

    Get PDF
    In this paper, a new thermal model based on the Fourier series solution of heat conduction equation has been introduced in detail. 1-D and 2-D Fourier series thermal models have been programmed in MATLAB/Simulink. Compared with the traditional finite-difference thermal model and equivalent RC thermal network, the new thermal model can provide high simulation speed with high accuracy, which has been proved to be more favorable in dynamic thermal characterization on power semiconductor switches. The complete electrothermal simulation models of insulated gate bipolar transistor (IGBT) and power diodes under inductive load switching condition have been successfully implemented in MATLAB/Simulink. The experimental results on IGBT and power diodes with clamped inductive load switching tests have verified the new electrothermal simulation model. The advantage of Fourier series thermal model over widely used equivalent RC thermal network in dynamic thermal characterization has also been validated by the measured junction temperature

    Sequential Monte Carlo EM for multivariate probit models

    Full text link
    Multivariate probit models (MPM) have the appealing feature of capturing some of the dependence structure between the components of multidimensional binary responses. The key for the dependence modelling is the covariance matrix of an underlying latent multivariate Gaussian. Most approaches to MLE in multivariate probit regression rely on MCEM algorithms to avoid computationally intensive evaluations of multivariate normal orthant probabilities. As an alternative to the much used Gibbs sampler a new SMC sampler for truncated multivariate normals is proposed. The algorithm proceeds in two stages where samples are first drawn from truncated multivariate Student tt distributions and then further evolved towards a Gaussian. The sampler is then embedded in a MCEM algorithm. The sequential nature of SMC methods can be exploited to design a fully sequential version of the EM, where the samples are simply updated from one iteration to the next rather than resampled from scratch. Recycling the samples in this manner significantly reduces the computational cost. An alternative view of the standard conditional maximisation step provides the basis for an iterative procedure to fully perform the maximisation needed in the EM algorithm. The identifiability of MPM is also thoroughly discussed. In particular, the likelihood invariance can be embedded in the EM algorithm to ensure that constrained and unconstrained maximisation are equivalent. A simple iterative procedure is then derived for either maximisation which takes effectively no computational time. The method is validated by applying it to the widely analysed Six Cities dataset and on a higher dimensional simulated example. Previous approaches to the Six Cities overly restrict the parameter space but, by considering the correct invariance, the maximum likelihood is quite naturally improved when treating the full unrestricted model.Comment: 26 pages, 2 figures. In press, Computational Statistics & Data Analysi

    A novel approach to emergency management of wireless telecommunication system

    Get PDF
    The survivability concerns the service continuity when the components of a system are damaged. This concept is especially useful in the emergency management of the system, as often emergencies involve accidents or incident disasters which more or less damage the system. The overall objective of this thesis study is to develop a quantitative management approach to the emergency management of a wireless cellular telecommunication system in light of its service continuity in emergency situations – namely the survivability of the system. A particular wireless cellular telecommunication system, WCDMA, is taken as an example to ground this research.The thesis proposes an ontology-based paradigm for service management such that the management system contains three models: (1) the work domain model, (2) the dynamic model, and (3) the reconfiguration model. A powerful work domain modeling tool called Function-Behavior-Structure (FBS) is employed for developing the work domain model of the WCDMA system. Petri-Net theory, as well as its formalization, is applied to develop the dynamic model of the WCDMA system. A concept in engineering design called the general and specific function concept is applied to develop a new approach to system reconfiguration for the high survivability of the system. These models are implemented along with a user-interface which can be used by emergency management personnel. A demonstration of the effectiveness of this study approach is included.There are a couple of contributions with this thesis study. First, the proposed approach can be added to contemporary telecommunication management systems. Second, the Petri Net model of the WCDMA system is more comprehensive than any dynamic model of the telecommunication systems in literature. Furthermore, this model can be extended to any other telecommunication system. Third, the proposed system reconfiguration approach, based on the general and specific function concept, offers a unique way for the survivability of any service provider system.In conclusion, the ontology-based paradigm for a service system management provides a total solution to service continuity as well as its emergency management. This paradigm makes the complex mathematical modeling of the system transparent to the manager or managerial personnel and provides a feasible scenario of the human-in-the-loop management

    Using datasets from the Internet for hydrological modeling: an example from the Kntnk Menderes Basin, Turkey

    Get PDF
    River basin development / Water resources / Data collection / Models / Hydrology / Land classification / Water management / Water scarcity / Water allocation / Stream flow / Water demand / Turkey / Kntnk Menderes Basin

    An intelligent alternative approach to the efficient network management

    Get PDF
    Due to the increasing complexity and heterogeneity of networks and services, many efforts have been made to develop intelligent techniques for management. Network intelligent management is a key technology for operating large heterogeneous data transmission networks. This paper presents a proposal for an architecture that integrates management object specifications and the knowledge of expert systems. We present a new approach named Integrated Expert Management, for learning objects based on expert management rules and describe the design and implementation of an integrated intelligent management platform based on OSI and Internet management models. The main contributions of our approach is the integration of both expert system and managed models, so we can make use of them to construct more flexible intelligent management network. The prototype SONAP (Software for Network Assistant and Performance) is accuracy-aware since it can control and manage a network. We have tested our system on real data to the fault diagnostic in a telecommunication system of a power utility. The results validate the model and show a significant improvement with respect to the number of rules and the error rate in others systems
    • 

    corecore