15,396 research outputs found

    Feature Extraction for Universal Hypothesis Testing via Rank-constrained Optimization

    Full text link
    This paper concerns the construction of tests for universal hypothesis testing problems, in which the alternate hypothesis is poorly modeled and the observation space is large. The mismatched universal test is a feature-based technique for this purpose. In prior work it is shown that its finite-observation performance can be much better than the (optimal) Hoeffding test, and good performance depends crucially on the choice of features. The contributions of this paper include: 1) We obtain bounds on the number of \epsilon distinguishable distributions in an exponential family. 2) This motivates a new framework for feature extraction, cast as a rank-constrained optimization problem. 3) We obtain a gradient-based algorithm to solve the rank-constrained optimization problem and prove its local convergence.Comment: 5 pages, 4 figures, submitted to ISIT 201

    Continuous Curvelet Transform: II. Discretization and Frames

    Get PDF
    We develop a unifying perspective on several decompositions exhibiting directional parabolic scaling. In each decomposition, the individual atoms are highly anisotropic at fine scales, with effective support obeying the parabolic scaling principle length ≈ width^2. Our comparisons allow to extend Theorems known for one decomposition to others. We start from a Continuous Curvelet Transform f → Γ_f (a, b, θ) of functions f(x_1, x_2) on R^2, with parameter space indexed by scale a > 0, location b ∈ R^2, and orientation θ. The transform projects f onto a curvelet γ_(abθ), yielding coefficient Γ_f (a, b, θ) = f, _(γabθ); the corresponding curvelet γ_(abθ) is defined by parabolic dilation in polar frequency domain coordinates. We establish a reproducing formula and Parseval relation for the transform, showing that these curvelets provide a continuous tight frame. The CCT is closely related to a continuous transform introduced by Hart Smith in his study of Fourier Integral Operators. Smith’s transform is based on true affine parabolic scaling of a single mother wavelet, while the CCT can only be viewed as true affine parabolic scaling in euclidean coordinates by taking a slightly different mother wavelet at each scale. Smith’s transform, unlike the CCT, does not provide a continuous tight frame. We show that, with the right underlying wavelet in Smith’s transform, the analyzing elements of the two transforms become increasingly similar at increasingly fine scales. We derive a discrete tight frame essentially by sampling the CCT at dyadic intervals in scale a_j = 2^−j, at equispaced intervals in direction, θ_(jℓ), = 2π2^(−j/2)ℓ, and equispaced sampling on a rotated anisotropic grid in space. This frame is a complexification of the ‘Curvelets 2002’ frame constructed by Emmanuel Candès et al. [1, 2, 3]. We compare this discrete frame with a composite system which at coarse scales is the same as this frame but at fine scales is based on sampling Smith’s transform rather than the CCT. We are able to show a very close approximation of the two systems at fine scales, in a strong operator norm sense. Smith’s continuous transform was intended for use in forming molecular decompositions of Fourier Integral Operators (FIO’s). Our results showing close approximation of the curvelet frame by a composite frame using true affine paraboblic scaling at fine scales allow us to cross-apply Smith’s results, proving that the discrete curvelet transform gives sparse representations of FIO’s of order zero. This yields an alternate proof of a recent result of Candès and Demanet about the sparsity of FIO representations in discrete curvelet frames

    A Study on the Impact of Locality in the Decoding of Binary Cyclic Codes

    Full text link
    In this paper, we study the impact of locality on the decoding of binary cyclic codes under two approaches, namely ordered statistics decoding (OSD) and trellis decoding. Given a binary cyclic code having locality or availability, we suitably modify the OSD to obtain gains in terms of the Signal-To-Noise ratio, for a given reliability and essentially the same level of decoder complexity. With regard to trellis decoding, we show that careful introduction of locality results in the creation of cyclic subcodes having lower maximum state complexity. We also present a simple upper-bounding technique on the state complexity profile, based on the zeros of the code. Finally, it is shown how the decoding speed can be significantly increased in the presence of locality, in the moderate-to-high SNR regime, by making use of a quick-look decoder that often returns the ML codeword.Comment: Extended version of a paper submitted to ISIT 201
    corecore