759 research outputs found

    Implementing 4-Dimensional GLV Method on GLS Elliptic Curves with j-Invariant 0

    Get PDF
    The Gallant-Lambert-Vanstone (GLV) method is a very efficient technique for accelerating point multiplication on elliptic curves with efficiently computable endomorphisms. Galbraith, Lin and Scott (J. Cryptol. 24(3), 446-469 (2011)) showed that point multiplication exploiting the 2-dimensional GLV method on a large class of curves over GF(p^2) was faster than the standard method on general elliptic curves over GF(p), and left as an open problem to study the case of 4-dimensional GLV on special curves (e.g., j(E) = 0) over GF(p^2). We study the above problem in this paper. We show how to get the 4-dimensional GLV decomposition with proper decomposed coefficients, and thus reduce the number of doublings for point multiplication on these curves to only a quarter. The resulting implementation shows that the 4-dimensional GLV method on a GLS curve runs in about 0.78 the time of the 2-dimensional GLV method on the same curve and in between 0.78-0.87 the time of the 2-dimensional GLV method using the standard method over GF(p). In particular, our implementation reduces by up to 27% the time of the previously fastest implementation of point multiplication on x86-64 processors due to Longa and Gebotys (CHES2010)

    Spectrally Similar Incommensurable 3-Manifolds

    Get PDF
    Reid has asked whether hyperbolic manifolds with the same geodesic length spectrum must be commensurable. Building toward a negative answer to this question, we construct examples of hyperbolic 3–manifolds that share an arbitrarily large portion of the length spectrum but are not commensurable. More precisely, for every n ≫ 0, we construct a pair of incommensurable hyperbolic 3–manifolds Nn and Nµn whose volume is approximately n and whose length spectra agree up to length n. Both Nn and Nµn are built by gluing two standard submanifolds along a complicated pseudo-Anosov map, ensuring that these manifolds have a very thick collar about an essential surface. The two gluing maps differ by a hyper-elliptic involution along this surface. Our proof also involves a new commensurability criterion based on pairs of pants

    Endomorphisms for faster elliptic curve cryptography on a large class of curves

    Get PDF
    Efficiently computable homomorphisms allow elliptic curve point multiplication to be accelerated using the Gallant-Lambert-Vanstone (GLV) method. We extend results of Iijima, Matsuo, Chao and Tsujii which give such homomorphisms for a large class of elliptic curves by working over quadratic extensions and demonstrate that these results can be applied to the GLV method. Our implementation runs in between 0.70 and 0.84 the time of the previous best methods for elliptic curve point multiplication on curves without small class number complex multiplication. Further speedups are possible when using more special curves

    Spectrally Similar Incommensurable 3-Manifolds

    Get PDF
    Reid has asked whether hyperbolic manifolds with the same geodesic length spectrum must be commensurable. Building toward a negative answer to this question, we construct examples of hyperbolic 3–manifolds that share an arbitrarily large portion of the length spectrum but are not commensurable. More precisely, for every n ≫ 0, we construct a pair of incommensurable hyperbolic 3–manifolds Nn and Nµn whose volume is approximately n and whose length spectra agree up to length n. Both Nn and Nµn are built by gluing two standard submanifolds along a complicated pseudo-Anosov map, ensuring that these manifolds have a very thick collar about an essential surface. The two gluing maps differ by a hyper-elliptic involution along this surface. Our proof also involves a new commensurability criterion based on pairs of pants
    • …
    corecore