28,270 research outputs found

    Algorithms and lower bounds for de Morgan formulas of low-communication leaf gates

    Get PDF
    The class FORMULA[s]GFORMULA[s] \circ \mathcal{G} consists of Boolean functions computable by size-ss de Morgan formulas whose leaves are any Boolean functions from a class G\mathcal{G}. We give lower bounds and (SAT, Learning, and PRG) algorithms for FORMULA[n1.99]GFORMULA[n^{1.99}]\circ \mathcal{G}, for classes G\mathcal{G} of functions with low communication complexity. Let R(k)(G)R^{(k)}(\mathcal{G}) be the maximum kk-party NOF randomized communication complexity of G\mathcal{G}. We show: (1) The Generalized Inner Product function GIPnkGIP^k_n cannot be computed in FORMULA[s]GFORMULA[s]\circ \mathcal{G} on more than 1/2+ε1/2+\varepsilon fraction of inputs for s=o ⁣(n2(k4kR(k)(G)log(n/ε)log(1/ε))2). s = o \! \left ( \frac{n^2}{ \left(k \cdot 4^k \cdot {R}^{(k)}(\mathcal{G}) \cdot \log (n/\varepsilon) \cdot \log(1/\varepsilon) \right)^{2}} \right). As a corollary, we get an average-case lower bound for GIPnkGIP^k_n against FORMULA[n1.99]PTFk1FORMULA[n^{1.99}]\circ PTF^{k-1}. (2) There is a PRG of seed length n/2+O(sR(2)(G)log(s/ε)log(1/ε))n/2 + O\left(\sqrt{s} \cdot R^{(2)}(\mathcal{G}) \cdot\log(s/\varepsilon) \cdot \log (1/\varepsilon) \right) that ε\varepsilon-fools FORMULA[s]GFORMULA[s] \circ \mathcal{G}. For FORMULA[s]LTFFORMULA[s] \circ LTF, we get the better seed length O(n1/2s1/4log(n)log(n/ε))O\left(n^{1/2}\cdot s^{1/4}\cdot \log(n)\cdot \log(n/\varepsilon)\right). This gives the first non-trivial PRG (with seed length o(n)o(n)) for intersections of nn half-spaces in the regime where ε1/n\varepsilon \leq 1/n. (3) There is a randomized 2nt2^{n-t}-time #\#SAT algorithm for FORMULA[s]GFORMULA[s] \circ \mathcal{G}, where t=Ω(nslog2(s)R(2)(G))1/2.t=\Omega\left(\frac{n}{\sqrt{s}\cdot\log^2(s)\cdot R^{(2)}(\mathcal{G})}\right)^{1/2}. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99]LTFFORMULA[n^{1.99}]\circ LTF. (4) The Minimum Circuit Size Problem is not in FORMULA[n1.99]XORFORMULA[n^{1.99}]\circ XOR. On the algorithmic side, we show that FORMULA[n1.99]XORFORMULA[n^{1.99}] \circ XOR can be PAC-learned in time 2O(n/logn)2^{O(n/\log n)}

    New Bounds for the Garden-Hose Model

    Get PDF
    We show new results about the garden-hose model. Our main results include improved lower bounds based on non-deterministic communication complexity (leading to the previously unknown Θ(n)\Theta(n) bounds for Inner Product mod 2 and Disjointness), as well as an O(nlog3n)O(n\cdot \log^3 n) upper bound for the Distributed Majority function (previously conjectured to have quadratic complexity). We show an efficient simulation of formulae made of AND, OR, XOR gates in the garden-hose model, which implies that lower bounds on the garden-hose complexity GH(f)GH(f) of the order Ω(n2+ϵ)\Omega(n^{2+\epsilon}) will be hard to obtain for explicit functions. Furthermore we study a time-bounded variant of the model, in which even modest savings in time can lead to exponential lower bounds on the size of garden-hose protocols.Comment: In FSTTCS 201

    Theory of quantum Loschmidt echoes

    Full text link
    In this paper we review our recent work on the theoretical approach to quantum Loschmidt echoes, i.e. various properties of the so called echo dynamics -- the composition of forward and backward time evolutions generated by two slightly different Hamiltonians, such as the state autocorrelation function (fidelity) and the purity of a reduced density matrix traced over a subsystem (purity fidelity). Our main theoretical result is a linear response formalism, expressing the fidelity and purity fidelity in terms of integrated time autocorrelation function of the generator of the perturbation. Surprisingly, this relation predicts that the decay of fidelity is the slower the faster the decay of correlations. In particular for a static (time-independent) perturbation, and for non-ergodic and non-mixing dynamics where asymptotic decay of correlations is absent, a qualitatively different and faster decay of fidelity is predicted on a time scale 1/delta as opposed to mixing dynamics where the fidelity is found to decay exponentially on a time-scale 1/delta^2, where delta is a strength of perturbation. A detailed discussion of a semi-classical regime of small effective values of Planck constant is given where classical correlation functions can be used to predict quantum fidelity decay. Note that the correct and intuitively expected classical stability behavior is recovered in the classical limit, as the perturbation and classical limits do not commute. The theoretical results are demonstrated numerically for two models, the quantized kicked top and the multi-level Jaynes Cummings model. Our method can for example be applied to the stability analysis of quantum computation and quantum information processing.Comment: 29 pages, 11 figures ; Maribor 2002 proceeding

    From Quantum Systems to L-Functions: Pair Correlation Statistics and Beyond

    Full text link
    The discovery of connections between the distribution of energy levels of heavy nuclei and spacings between prime numbers has been one of the most surprising and fruitful observations in the twentieth century. The connection between the two areas was first observed through Montgomery's work on the pair correlation of zeros of the Riemann zeta function. As its generalizations and consequences have motivated much of the following work, and to this day remains one of the most important outstanding conjectures in the field, it occupies a central role in our discussion below. We describe some of the many techniques and results from the past sixty years, especially the important roles played by numerical and experimental investigations, that led to the discovery of the connections and progress towards understanding the behaviors. In our survey of these two areas, we describe the common mathematics that explains the remarkable universality. We conclude with some thoughts on what might lie ahead in the pair correlation of zeros of the zeta function, and other similar quantities.Comment: Version 1.1, 50 pages, 6 figures. To appear in "Open Problems in Mathematics", Editors John Nash and Michael Th. Rassias. arXiv admin note: text overlap with arXiv:0909.491
    corecore