18,607 research outputs found

    Elusive extremal graphs

    Get PDF
    We study the uniqueness of optimal solutions to extremal graph theory problems. Lovasz conjectured that every finite feasible set of subgraph density constraints can be extended further by a finite set of density constraints so that the resulting set is satisfied by an asymptotically unique graph. This statement is often referred to as saying that `every extremal graph theory problem has a finitely forcible optimum'. We present a counterexample to the conjecture. Our techniques also extend to a more general setting involving other types of constraints

    Meyer sets, topological eigenvalues, and Cantor fiber bundles

    Full text link
    We introduce two new characterizations of Meyer sets. A repetitive Delone set in Rd\R^d with finite local complexity is topologically conjugate to a Meyer set if and only if it has dd linearly independent topological eigenvalues, which is if and only if it is topologically conjugate to a bundle over a dd-torus with totally disconnected compact fiber and expansive canonical action. "Conjugate to" is a non-trivial condition, as we show that there exist sets that are topologically conjugate to Meyer sets but are not themselves Meyer. We also exhibit a diffractive set that is not Meyer, answering in the negative a question posed by Lagarias, and exhibit a Meyer set for which the measurable and topological eigenvalues are different.Comment: minor errors corrected, references added. To appear in the Journal of the LM

    Intrinsic Universality in Self-Assembly

    Get PDF
    We show that the Tile Assembly Model exhibits a strong notion of universality where the goal is to give a single tile assembly system that simulates the behavior of any other tile assembly system. We give a tile assembly system that is capable of simulating a very wide class of tile systems, including itself. Specifically, we give a tile set that simulates the assembly of any tile assembly system in a class of systems that we call \emph{locally consistent}: each tile binds with exactly the strength needed to stay attached, and that there are no glue mismatches between tiles in any produced assembly. Our construction is reminiscent of the studies of \emph{intrinsic universality} of cellular automata by Ollinger and others, in the sense that our simulation of a tile system TT by a tile system UU represents each tile in an assembly produced by TT by a cĂ—cc \times c block of tiles in UU, where cc is a constant depending on TT but not on the size of the assembly TT produces (which may in fact be infinite). Also, our construction improves on earlier simulations of tile assembly systems by other tile assembly systems (in particular, those of Soloveichik and Winfree, and of Demaine et al.) in that we simulate the actual process of self-assembly, not just the end result, as in Soloveichik and Winfree's construction, and we do not discriminate against infinite structures. Both previous results simulate only temperature 1 systems, whereas our construction simulates tile assembly systems operating at temperature 2
    • …
    corecore