6,427 research outputs found

    LMI-based design of state-feedback controllers for pole clustering of LPV systems in a union of DR-regions

    Get PDF
    This paper introduces an approach for the design of a state-feedback controller that achieves pole clustering in a union of DR-regions for linear parameter varying systems. The design conditions, obtained using a partial pole placement theorem, are eventually expressed in terms of linear matrix inequalities. In addition, it is shown that the approach can be modified in a shifting sense. Hence, the controller gain is computed such that different values of the varying parameters imply different regions of the complex plane where the closed-loop poles are situated. This approach enables the online modification of the closed-loop performance. The effectiveness of the proposed method is demonstrated by means of simulations.acceptedVersio

    LMI-based design of state-feedback controllers for pole clustering of LPV systems in a union of -regions

    Get PDF
    This paper introduces an approach for the design of a state-feedback controller that achieves pole clustering in a union of DR-regions for linear parameter varying systems. The design conditions, obtained using a partial pole placement theorem, are eventually expressed in terms of linear matrix inequalities. In addition, it is shown that the approach can be modified in a shifting sense. Hence, the controller gain is computed such that different values of the varying parameters imply different regions of the complex plane where the closed-loop poles are situated. This approach enables the online modification of the closed-loop performance. The effectiveness of the proposed method is demonstrated by means of simulations.Peer ReviewedPostprint (author's final draft

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains
    • …
    corecore